
NNT : 2025AIXM0435

THÈSE DE DOCTORAT
Soutenue à AMU – Aix-Marseille Université
le 4 décembre 2025 par

Lison BLONDEAU-PATISSIER

Jeux concurrents à pointeurs et calcul à ressource
Pointer Concurrent Games and the Resource Calculus

Discipline
Mathematics

École doctorale
Mathématiques et informatique (ED 184)

Laboratoire
Institut de mathématiques de Marseille
(I2M, UMR 7373)
Laboratoire d’Informatique et des Systèmes
(LIS, UMR 7020)

Composition du jury

Giulio MANZONETTO Rapporteur
Professeur des universités,
Paris Cité

Guy McCUSKER Rapporteur
Professor of Computing,
University of Bath

Claudia FAGGIAN Examinatrice
Chargée de recherche,
Paris Cité

Marie KERJEAN Examinatrice
Chargée de recherche,
Sorbonne Paris Nord

Stefano GUERRINI Président du jury
Professeur des universités,
Sorbonne Paris Nord

Lionel VAUX AUCLAIR Directeur de thèse
Maître de conférences,
Aix-Marseille Université

Pierre CLAIRAMBAULT Co-directeur de thèse
Directeur de recherche,
Aix-Marseille Université



Pointer Concurrent Games and the Resource Calculus

Disclaimer
This page is based on the corresponding page of Ken Arroyo Ohori’s thesis, with minimal changes.

No copyright
cz This book is released into the public domain using the CC0 code.

To the extent possible under law, I waive all copyright and related or neighbouring rights to this work.

To view a copy of the CC0 code, visit http://creativecommons.org/publicdomain/zero/1.0/.

Colophon
This document was typeset with the help of KOMA-Script and LAT

E
X using the kaobook class.

http://creativecommons.org/publicdomain/zero/1.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/


Affidavit

I, undersigned, Lison Blondeau-Patissier, hereby declare that the work presented in this manuscript is my

own work, carried out under the scientific supervision of Pierre Clairambault and Lionel Vaux Auclair, in

accordance with the principles of honesty, integrity and responsibility inherent to the research mission.

The research work and the writing of this manuscript have been carried out in compliance with both the

french national charter for Research Integrity and the Aix-Marseille University charter on the fight against

plagiarism.

This work has not been submitted previously either in this country or in another country in the same or in a

similar version to any other examination body.

Lyon, 09/09/25

Lison Blondeau-Patissier



Liste de publications et participation aux
conférences

Liste des publications réalisées dans le cadre du projet de thèse :

Revues

1. Strategies as Resources Terms, and Their Categorical Semantics, Lison Blondeau-Patissier, Pierre Clairambault

and Lionel Vaux Auclair. (Version longue de 3.)

Logical Methods in Computer Science (LMCS), 2025.

https://doi.org/10.46298/lmcs-21(4:9)2025.

Actes de conférences

2. Positional Injectivity for Innocent Strategies, Lison Blondeau-Patissier and Pierre Clairambault.

Formal Structures for Computation and Deduction (FSCD), 2021.

https://doi.org/10.4230/LIPIcs.FSCD.2021.17.

3. Strategies as Resource Terms, and Their Categorical Semantics, Lison Blondeau-Patissier, Pierre Clairambault

and Lionel Vaux Auclair.

Formal Structures for Computation and Deduction (FSCD), 2023.

https://doi.org/10.4230/LIPIcs.FSCD.2023.13.

4. Resource Categories from Differential Categories, Lison Blondeau-Patissier.

Journées Francophones des Langages Applicatifs (JFLA), 2024.

https://inria.hal.science/hal-04406440.

Pré-publications

5. Extensional Taylor Expansion, Lison Blondeau-Patissier, Pierre Clairambault and Lionel Vaux Auclair.

2025. https://doi.org/10.48550/arXiv.2305.08489.

Participation aux conférences et écoles d’été pendant la période de thèse :

Présentations lors de conférences

1. Formal Structures for Computation and Deduction (FSCD).

Juillet 2021, en ligne. https://fscd2021.dc.uba.ar.

Exposé : Positional Injectivity for Innocent Strategies.
2. Journées du GT Scalp.

Novembre 2021, Fontainebleau. https://www.irif.fr/gt-scalp/journees-2021.

Exposé : Positional Injectivity for Innocent Strategies.
3. Formal Structures for Computation and Deduction (FSCD).

Juillet 2023, Roma (Italie). https://easyconferences.eu/fscd2023.

Exposé : Strategies as Resource Terms, and Their Categorical Semantics.
4. Séminaire Chocola.

Septembre 2023, Lyon. https://chocola.ens-lyon.fr/events/meeting-2023-09-28.

Exposé : Strategies as Resource Terms, and Their Categorical Semantics,

https://doi.org/10.46298/lmcs-21(4:9)2025
https://doi.org/10.4230/LIPIcs.FSCD.2021.17
https://doi.org/10.4230/LIPIcs.FSCD.2023.13
https://inria.hal.science/hal-04406440
https://doi.org/10.48550/arXiv.2305.08489
https://fscd2021.dc.uba.ar
https://www.irif.fr/gt-scalp/journees-2021
https://easyconferences.eu/fscd2023
https://chocola.ens-lyon.fr/events/meeting-2023-09-28


5. Workshop GALOP.

Janvier 2024, London (Royaume-Uni). https://popl24.sigplan.org/home/galop-2024.

Exposé : Taylor Expansion is Game Semantics.
6. Journées Francophones des Langages Applicatifs (JFLA).

Janvier 2024, Saint-Jacut-de-la-Mer. https://jfla.inria.fr/jfla2024.html.

Exposé : Resource Categories from Differential Categories.

Poster
1. Journées Nationales du GDR IM.

Mars-Avril 2022, Lille. https://jnim2022.sciencesconf.org.

Poster : An Extensional Resource lambda-calculus and its Categorical Semantics.

Autres – Écoles et conférences suivies
1. Rencontres mensuelles Chocola,

2021–2025, Lyon. https://chocola.ens-lyon.fr.

2. Mois thématique 2022 Logique et Interactions, Marseille :

▶ École d’hiver de logique linéaire. https://conferences.cirm-math.fr/2685.html.

▶ Logique de la programmation probabiliste. https://conferences.cirm-math.fr/2686.html.

▶ Logique et structures supérieures. https://conferences.cirm-math.fr/2689.html.

3. Journées du GT Scalp,

Février 2023, Marseille. https://conferences.cirm-math.fr/2992.html.

Novembre 2023, Orléans. https://www.irif.fr/gt-scalp/journees-2023.

4. 𝜆-calcul différentiel et logique linéaire différentielle, 20 ans après,
Mai 2024, Marseille. https://conferences.cirm-math.fr/2980.html.

5. Avancées en Sémantiques Interactives et Quantitatives,
Mai 2025, Marseille. https://conferences.cirm-math.fr/3518.html.

https://popl24.sigplan.org/home/galop-2024
https://jfla.inria.fr/jfla2024.html
https://jnim2022.sciencesconf.org
https://chocola.ens-lyon.fr
https://conferences.cirm-math.fr/2685.html
https://conferences.cirm-math.fr/2686.html
https://conferences.cirm-math.fr/2689.html
https://conferences.cirm-math.fr/2992.html
https://www.irif.fr/gt-scalp/journees-2023
https://conferences.cirm-math.fr/2980.html
https://conferences.cirm-math.fr/3518.html


Résumé et mots clés

Cette thèse présente les jeux concurrents à pointeurs, et étudie les liens entre la sémantique des jeux d’une

part et le 𝜆-calcul à ressources d’autre part.

On s’intéresse tout d’abord aux liens entre sémantique des jeux et modèle relationnel. On commence par

introduire un nouveau modèle de jeux, les jeux concurrents à pointeurs (PCG). Ce modèle s’inspire à la fois des

jeux HO traditionnels et des jeux concurrents. On établit une bĳection entre les augmentations (quotientées

par isomorphisme) dans PCG et les parties (quotientées par homotopie) des stratégies innocentes dans HO.

Ce modèle nous permet d’obtenir un premier résultat d’injectivité positionnelle dans PCG, qui se traduit

en un résultat d’injectivité positionnelle pour les stratégies innocentes, finies et totales dans HO. On montre

également que les stratégies innocentes partielles infinies ne sont pas positionnellement injectives.

On introduit ensuite le calcul à ressources extensionnel, c’est-à-dire typé de façon à ce que les termes en forme

normale soient également en forme 𝜂-longue. Ces termes sont en bĳection avec les classes d’isomorphisme

d’augmentations dans PCG.

On peut maintenant s’intéresser à l’aspect dynamique de la sémantique. On définit une opération de composition
dans PCG, et on montre que PCG est une catégorie symétrique monoïdale fermée. La correspondance entre

PCG et HO s’étend en un foncteur cartésien fermé strict.

Pour étudier l’interprétation du calcul à ressources dans PCG, on cherche à exprimer plus précisément sa

structure catégorique. Pour cela, on introduit les catégories à ressources, inspirées des catégories différentielles.

On définit l’interprétation du calcul à ressources dans une catégorie à ressources, et on montre qu’elle est

compatible avec la 𝛽-réduction. PCG forme une catégorie à ressources, dans laquelle l’interprétation du

calcul à ressources coïncide avec la bĳection établie précédemment pour les termes en forme normale.

Mots clés : Sémantique dénotationnelle.

Sémantique des jeux→ innocence, positions, jeux Hyland-Ong, jeux concurrents à pointeurs.

𝜆-calcul→ calcul à resources.

Sémantique catégorique→ catégories à ressources.



Abstract and keywords

This thesis presents the Pointer Concurrent Games model. We study the links between game semantics and

resource 𝜆-calculus.

First, we focus on the links between game semantics and relational semantics. We introduce a new game

model, pointer concurrent games (or PCG), inspired by traditional HO games and by concurrent games. There is

a bĳection bewteen augmentations (up to isomorphism) in PCG and plays (up to homotopy) of innocent strategies
in HO. We obtain a first result of positional injectivity in PCG, which translates to a result of positional

injectivity for total finite innocent strategies in HO. We also prove that partial infinite innocent strategies are not
positionaly injective.

Next we introduce the extensional resource calculus, i.e. a typed resource calculus where typing rules ensure

that terms in normal form are also in 𝜂-long form. These terms are in bĳection with the augmentations (up to

isomorphism) in PCG.

We can now consider the dynamic aspect of the semantics. We define the composition in PCG, and we show

that PCG is a closed symetric monoidal category. The correspondance between PCG and HO is extended to a

strict cartesian closed functor.

Finally, in order to study the interpretation of the resource calculus in PCG, we try and describe more precisely

its categorical structure by introducing resource categories – inspired by differential categories. We construct

a sound interpretation of the resource calculus in a resource category, and we show that PCG is indeed a

resource category. Moreover, this interpretation coincides with the bĳection for normal resource terms.

Keywords: Denotational semantics.

Game semantics→ innocence, positions, Hyland-Ong games, pointer concurrent games.

𝜆-calculus→ resource calculus.

Categorical semantics→ resource categories.



Contents

Affidavit iii

Liste de publications et participation aux conférences iv

Résumé et mots clés vi

Abstract and keywords vii

Contents viii

Introduction 1

Preliminaries 11

1 Reminders: Categories, 𝜆-calculus and Resource calculus 13
1.1 Categorical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Symmetric Monoidal Closed Categories . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2 String diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Monoids and Comonoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Lambda-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Terms of 𝜆-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Free and bound variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.5 Simple types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Resource calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Preliminaries on tuples and bags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Terms of the resource calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Resource reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.5 Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Introduction to Hyland-Ong Games 23
2.1 Arenas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Constructors on arenas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Plays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Innocence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Other properties of strategies: totality and finiteness . . . . . . . . . . . . . . . . . . 31

2.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 HO and HOInn
as categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Links with the resource calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



An introduction to Pointer Concurrent Games 37

3 Static Pointer Concurrent Games: Configurations and Augmentations 39
3.1 Relational Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Relational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Positional Injectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Positionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Positional Injectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Isogmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Additional Conditions on Augmentations . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Augmentations in PCG v. Plays in HO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Homotopy relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 From plays to isogmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 From isogmentations to plays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.4 𝜒 is a bĳection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Meagre Innocent Strategies in PCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Meagre Innocent Augmentations and Isogmentations . . . . . . . . . . . . . . . . . . 55

3.5.2 From innocent strategies to mii’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 From mii’s to innocent strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.4 The isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Fat Innocent Strategies in PCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Fat Innocent (Iso)expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.3 The isomorphisms isog(−) and iexp ◦MII(−) coincide . . . . . . . . . . . . . . . . . . 63

3.7 A few words on Infinite Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Positional Injectivity, for PCG and for HO 65
4.1 Duplicating Opponent Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Proof idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Characteristic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Bisimulation Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Bisimulations across an isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Bisimulations between non-isomorphic augmentations . . . . . . . . . . . . . . . . . 72

4.2.3 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Total MIAs are Positionally Injective in PCG . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Positional Injectivity in HO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Total Finite Innocent Strategies are Positionally Injective in HO . . . . . . . . . . . . . 86

4.4.2 Beyond Total Finite Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Composition and Resource Calculus Semantics 89

5 Augmentations are Normal Resource Terms 91
5.1 Extensional simply-typed resource calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.2 Reduction and substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



5.1.3 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 A few additional PCG constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Construction on arenas – HomGame . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Constructions on configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 The isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Types and contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Resource sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3 Resource bags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.4 Currying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.5 Head occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.6 The isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Composition and Categorical Structure 103
6.1 Composition for augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Interaction via an isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.2 Composition via an isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.3 Composing isogmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Strategies and identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 The categorical structure of PCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Associativity of the composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 Neutrality of copycat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 PCG is a SMCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.2 Structural morphisms – intuitively . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.3 Renamings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.4 Structural morphisms – formally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.5 Closed structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 From qualitative PCG to HO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.1 Arrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.2 Plays⇒(−) and innocent strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5.3 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5.5 Functor between PCG and HO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Resource Categories 147
7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.1 Additivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.2 Bialgebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1.3 Pointed Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1.4 Resource Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1.5 Closeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Properties of resource categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.2 Bags of pointed morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.3 Comonoid morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Interpretation and Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



7.3.2 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3.3 Substitution lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4 How to build your own resource category . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4.1 Additive monoidal storage categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.2 The construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.4.3 What about closeness? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8 PCG and Resource-calculus 173
8.1 PCG is a resource category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.1.1 Additive structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.1.2 Bialgebra laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.1.3 Proof of the bialgebra distributivity law . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.1.4 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.1.5 Pointed identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.1.6 Closed structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2 Compatibility with normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Conclusion 185

Appendices 189

Bibliography 191

Alphabetical Index 194

Nomenclature 196





  y

5 + 3 = ?

8 :)

Figure 1: A simple example.

n+0 = n

n+(S m) = (S n)+m

Figure 2: Formal rules for the addition

in Nat.

y

8 :)

5 + 3

= 6 + 2

= 7 + 1

= 8 + 0

= 8

Figure 3: Step-by-step computation.

Introduction

What is game semantics? . . . 1
About calculi . . . . . . . . . . 3
Bridging the gap between
models . . . . . . . . . . . . . . 3
Contributions . . . . . . . . . . 6
Outline . . . . . . . . . . . . . . 9

A brief outline. Game semantics is a formal model of the execution

of programs. It may be more correct to write “are formal models”, as

there are many different game models; this thesis focuses both on the

standard HO games and on a new model, Pointer Concurrent Games (or

PCG for short). We study correspondences between several ways of

approximating the behavior of programs, trying to better understand

how they are related; in particular we will describe some links between

PCG, HO, the relational model, and the resource calculus – as well as

expose the categorical structure of PCG.

What is (game) semantics anyway?

What is this thesis about? Despite the fact that “Mathematics” is

written on the title page of this document, it is at heart as much about

computer science as about mathematics – or rather, it is about the

mathematical structures of programs and computations. The semantics
of programming languages is the study of formal properties of the

executions of programs, by modeling executions with mathematical

objects in order to better understand their structure and properties.

Consider for instance the interaction between a user and their calculator

presented in Figure 1.

They are several ways to model this computation.

Operational semantics focuses on the operations performed during the

computation by giving formal rules on syntax, modeling for example the

step-by-step execution of a program.

For instance, we can represent natural numbers with:

n, m ∈ Nat ::= 0 | S n .

Notation: The line above is an inductive definition of the elements of Nat

(given in Backus–Naur form, or BNF for short). It means that the elements

of Nat are written n or m, and that they are either 0 or of the form S n

where n is an element of Nat.

Here 0 represents the natural number 0, and S n is the successor of the

natural number 𝑛 represented by n (i. e. S n represents 𝑛 + 1).

Notation: For any 𝑛 ∈ ℕ, we write 𝑛 as a shortcut for S . . . S︸︷︷︸
𝑛 times

0.

Then 𝑛 represents 0+1 + . . . + 1︸        ︷︷        ︸
𝑛 times

, i.e. the number 𝑛.

Going back to our addition example, the calculator uses the rules pre-

sented in Figure 2 to perform the step-by-step computation of Figure 3.



2 Introduction

y

8 :)

J5+3K
= J_+_K(5, 3)
= 8

Figure 4: Denotational point of view.

[37]: Scott (1993), ‘A Type-Theoretical Al-

ternative to ISWIM, CUCH, OWHY’

[36]: Plotkin (1977), ‘LCF Considered as

a Programming Language’

1: Remark: We use model as a synonym

for semantics, most of the time implicitely

denotational semantics.
[27]: Hyland and Ong (2000), ‘On Full

Abstraction for PCF: I, II, and III’

[35]: Nickau (1994), ‘Hereditarily Sequen-

tial Functionals’

[1]: Abramsky, Jagadeesan, and

Malacaria (2000), ‘Full Abstraction for

PCF’

Opponent

 

Player

y

n + m = ?

n = ?

n = 5

m = ?

m = 3

n + m = 8

Figure 5: A play for “5+3 = 8”

Denotational semantics is the translation of a program 𝑀 to a mathe-

matical object J𝑀K, its denotation. Here a program is seen as a function,

whose arguments are the inputs of the program.

For the addition example, we could write for instance:

J_+_K : ℕ × ℕ → ℕ

(𝑛, 𝑚) ↦→ 𝑛 + 𝑚

and represent the computation 5 + 3 = 8 as in Figure 4.

This way of modelling execution has several advantages; it does not

depend as much on a specific syntax, and it allows us to study compositional
properties of programs (for instance, we might want J 𝑓 (𝑥)K = J 𝑓 K(J𝑥K)).

Historical context. Game semantics is a denotational semantics that

arose in the early 90’s from the problem of “full abstraction for PCF”, i.e.
the question of whether all observationally equivalent programs in PCF

(Programming Computable Functions, a typed fonctional language – see

[37] or [36]) have equal denotations.

Some of the first fully abstract models
1

for PCF are game models:

HO/N games, or HO games, independently introduced in [27] and in [35];

and AJM games, introduced in [1]. Since then there have been lots of de-

veloppements in this line of work, and there are numerous other models

– involving non-determinism, concurrency, etc. – but in this thesis, we

focus only on HO games (with inspiration from concurrent games).

Intuitions on games. Game semantics models programs as processes,

focusing on the interactions between the program and its environment.

These interactions are represented as plays in a game between two

protagonists, one of them called Player representing the program and

the other called Opponent representing the environment.

In our example from Figure 1, Player would be the calculator y and

Opponent the user  . Their interaction could be represented by the

dialogue in Figure 5

Information tokens exchanged between Opponent and Player are called

moves. The “rules” of the game, i.e. which moves are available and when,

are given by an annotated tree structure called the arena – it corresponds

to the type of the program. An example of such a rule could be: when
Player asks n = ?, Opponent can only respond with an integer value, like n = 5,

because the type of the addition program here is ℕ × ℕ→ ℕ.

A play represents one possible execution of a program; for instance Fig-

ure 5 represents one execution of the addition program, where Opponent

wants to compute 5 + 3.

Programs themselves are represented by strategies, which are sets of plays

corresponding to every possible execution of the program. The strategy

representing the addition program would include plays corresponding

to any computation of n + m for any n, m; as well as executions where

Opponent decides to stop the computation, or to repeat (part of) it.



Introduction 3

[14]: Church (1940), ‘A Formulation of

the Simple Theory of Types’

[2]: Barendregt (1984), The lambda calculus
- its syntax and semantics

[24]: Girard (1987), ‘Linear logic’

[25]: Girard (1988), ‘Normal functors,

power series and 𝜆-calculus’

[10]: Boudol (1993), ‘The lambda-calculus

with multiplicities’

[11]: Boudol, Curien, and Lavatelli (1999),

‘A semantics for lambda calculi with re-

sources’

About Calculi

𝜆-calculus. Introduced by Church in the 30’s (see [14] for the historical

reference, or [2] for a more detailed introduction), the 𝜆-calculus is a

formal programming language, where programs are terms of the form:

𝑀, 𝑁, 𝐿, . . . F 𝑥 (variable)
| 𝜆𝑥.𝑀 (abstraction)
| 𝑀 𝑁 (application)

An abstraction 𝜆𝑥.𝑀 represents a function “𝑥 ↦→ 𝑀” – i. e. a program

which asks for some input 𝑥 and then executes a subprogram 𝑀.

An application 𝑀 𝑁 represents a function application “𝑀(𝑁)” – i. e. a

subprogram 𝑀 called with the subprogram 𝑁 as its input.

Given a program 𝜆𝑥.𝑀 and an input 𝑁 , one step of the execution of the

program (𝜆𝑥.𝑀) 𝑁 is to compute “𝑀[𝑁/𝑥]”, the 𝜆-term written like

𝑀 but where each occurrence of 𝑥 is substituted by a copy of 𝑁 . This

operation is the 𝛽-reduction, written (𝜆𝑥.𝑀) 𝑁 →𝛽 𝑀[𝑁/𝑥] .

Example:
(
𝜆𝑥.𝑦 𝑥 𝑥

)
𝑁 →𝛽 𝑦 𝑁 𝑁 .

Notation (priority rules): The abstraction always captures the largest

possible term, i. e. the term 𝜆𝑥.𝑀 𝑁 is to be read as 𝜆𝑥. (𝑀𝑁). The

application is left-associative, i. e. the term𝑀𝑁 𝐿 is to be read as (𝑀𝑁) 𝐿.

Hence the term

(
𝜆𝑥.𝑦 𝑥 𝑥

)
𝑁 is

(
𝜆𝑥.

( (
𝑦 𝑥

)
𝑥
) )
𝑁 .

Resource calculus. The resource calculus, on the other hand, arose from

linear logic (introduced in [24]) and quantitative semantics ([25]). Unlike

the usual 𝜆-calculus, the resource calculus sees terms as resources which

can each be used exactly once. Hence, the substitution is not defined

with a single argument term 𝑁 anymore, but rather with a multiset of

terms [𝑁1 , . . . , 𝑁𝑛], which will each replace exactly one occurence of 𝑥

in 𝑀 – the exact bĳection being chosen non-deterministically, via a sum

of resource terms corresponding to all possible substitutions.

Example:
(
𝜆𝑥.𝑦 [𝑥] [𝑥]

)
[𝑁1 , 𝑁2] →𝛽 𝑦 [𝑁1] [𝑁2] + 𝑦 [𝑁2] [𝑁1].

This allows for a control of the number of copies of 𝑁 , and for exam-

ple ensures that the reduction terminates. Replacing arguments with

multisets of terms in 𝜆-calculi first emerged with the 𝜆-calculus with

multiplicities [10], the term resource appearing a few years later in [11].

Bridging the gap between models

Motivation. Both game semantics and resource calculus have been

well-studied lines of work for years, and both of them consider (sets

of) finite executions of programs to represent programs with possibly

infinite behavior. It is only natural to try and formalize a correspondence

between the two of them.

We are also interested in the connections between games and the relational

model, another semantics of programming languages.



4 Introduction

[25]: Girard (1988), ‘Normal functors,

power series and 𝜆-calculus’

[9]: Boudes (2009), ‘Thick Subtrees,

Games and Experiments’

Of course, there is a practical motivation for this work. The more we

know about how to go from one model to another, the easier it becomes

to translate well-known properties from one model to the other without

having to prove them from scratch. It allows us to choose which setting

to work in when trying to prove new results, in order to work with the

model that is best suited for the proof techniques we want to use.

But above all, understanding links between models gives us a better

understanding of the models themselves, and of the actual programs they

seek to represent. Each model showcases different particularities of the

computational behavior of programs, so if we gain a better understanding

of their similarities and of their divergences, we come closer to grasping

the “true” computational behavior of programs.

State of the art

Relational model. While game semantics focuses on the dynamic aspect

of programs and their composition, there exist more static models, such

as relational semantics (see [25] for one of its first (implicit) appearances).

In the relational model Rel!, types are sets and programs are relations

between those sets – more precisely, between finite multisets over the set

for the input type and subsets of the set for the output type.

Going back to the addition example, we might write:

J_+_K ⊆ M𝑓 (ℕ) ×M𝑓 (ℕ) × ℕ

where M𝑓 (𝑋) is the set of finite multisets over𝑋 . In particular, we have:

([5], [3], 8) ∈ J_+_K .

Remark that we recognize the moves n=5, m=3 and n+m=8 of Figure 5.

More generally, the elements of the relational model can be seen as

desequentialized plays (see [9]), i. e. plays where the chronological infor-

mation is forgotten. We call the operation from plays in HO to positions

in Rel! the relational collapse.

Surely this temporal information, once forgotten, is gone and cannot be

recovered? It is true in general if you just look at plays, but when one

looks at strategies things are a bit different.

Innocent strategies. Innocence is a key notion in game semantics: inno-

cent strategies are strategies whose behavior does not change if Opponent

duplicates moves, or chooses to perform some moves in a different order.

They correspond to 𝜆-terms, or programs, without mutable states.

  ï

start

n = ?

n=3

res=1

Figure 6: One execution of ï.

Example: Consider a mystery program ï, of type ℕ → ℕ. We know

the execution from Figure 6 happened. Now, if ïis innocent
‗
, then it

must always return res=1 no matter how many times Opponent plays

the move n=3 – because without mutable states, it has no way of storing

the information “this is the second time Opponent plays n=3”.

‗
Of course, given that three crows make a murder, their innocence is unlikely.



Introduction 5

[33]: Melliès (2006), ‘Asynchronous

games 2: The true concurrency of inno-

cence’

[18]: de Carvalho (2016), ‘The Relational

Model Is Injective for Multiplicative Ex-

ponential Linear Logic’

[40]: Tsukada and Ong (2016), ‘Plays as

Resource Terms via Non-idempotent In-

tersection Types’

[33]: Melliès (2006), ‘Asynchronous

games 2: The true concurrency of inno-

cence’

  ï

start

n = ?

n=3

res=1

n=4

res=42

and

  ï

start

n = ?

n=4

res=42

n=3

res=1

Figure 7: Two homotopic plays.

In a way, innocent strategies already “forget” part of the temporal

information in a play, as they act only according to the current thread.

Hence it makes sense to focus on the connections between innocent
strategies in games and the relational model.

Positionality in asynchronous games. A strategy is positional if its

behavior only depends on the current position (the moves that have

been played so far, without chronological order), and not the sequence of

positions reached in the computation. In Melliès’ asynchronous games,

innocent strategies are positional [33, Theorem 2]. However, this corre-

spondence is made possible by the fact that events carry explicit copy

indices, that help distinguish duplications of the same move.

What about HO games? In HO games, collapsing strategies to Rel! gives

us a set of positions; but it is not clear if innocent strategies in HO are still

positional without the help of copy indices.

We can also consider the weaker property of positional injectivity: is an

innocent strategy characterized by its set of positions? Results on the

injectivity of the relational model for linear logic presented in [18] suggest

that some temporal information can be recovered from the structure;

and indeed Tsukada and Ong show an injective collapse from a category

of innocent strategies onto the relational model in [40]. However, their

interpretation of the base type 𝛼 in Rel! is a countably infinite set 𝑋,

which allows them to label moves in each play in order to encode some

causal links in the interpretation – but then we lose the correspondence

between plays and points of the web in relational semantics.

Question 1: Can we obtain a similar result of positional injectivity

without this labeling, interpreting 𝛼 with a singleton?

Resource terms and HO games. As stated previously, HO games and

resource terms both consider (sets of) finite executions of programs to

represent programs with possibly infinite behavior.

Tsukada and Ong showed in [40] that (𝛽-normal, 𝜂-long) resource terms

are in bĳection with plays of HO games up to Melliès’ homotopy equivalence.
This homotopy relation, defined in [33], equates plays quotiented by

Opponent’s scheduling, i. e. the order in which Opponent duplicates

moves or starts a new thread.

Example: See the plays from Figure 7: Opponent can choose to play

n=3 first and n=4 second, or the reverse – and if ïis innocent then

Player’s reaction to both of these moves does not depend on the order of

Opponent’s inputs. The second play is just the first one with the pairs of

moves (n=3, res=1) and (n=4, res=42) switched.

However, Tsukada and Ong’s correspondence is not direct, going through

their aforementioned relational collapse; moreover it does not detail the

dynamical aspect of the interpretation.

Question 2: Can we understand the correspondence between games

and normal resource terms in a more direct way?

Question 3: What about interpreting non normal resource terms?



6 Introduction

start

n = ?

n=3

res=1

n=4

res=42

Figure 8: Augmentation from Figure 7.

[15]: Clairambault (2024), ‘Causal Inves-

tigations in Interactive Semantics’

[18]: de Carvalho (2016), ‘The Relational

Model Is Injective for Multiplicative Ex-

ponential Linear Logic’

[40]: Tsukada and Ong (2016), ‘Plays as

Resource Terms via Non-idempotent In-

tersection Types’

Contributions

Static Pointer Concurrent Games. PCG originated from the wish to

better understand the links between Rel! and HO. When working with

innocent strategies, we often look at plays quotiented by homotopy, because

Opponent’s scheduling is not relevant to the behavior of the strategy.

To focus on the “relevant” part of the chronological information, we

defined augmentations as the main object of PCG, rather than plays.

They correspond to plays quotiented by homotopy, and they encode only

causal links that informs us on the causal structure of the strategy.

Example: The two plays from Figure 7 correspond to the same augmen-

tation, drawn in Figure 8.

This construction is inspired by the modern approach of concurrent games
– see [15] for a detailed presentation. Augmentations retain the causal

structure of the strategy, as well as pointers following the rules of the

arena – one can think of pointers as the links between bound variables

and abstractions in 𝜆-calculus. In Figure 8 for instance, there are pointers

from n=3 to n= ?, and from n=4 to n= ?.

Main results [Chapter 3]:

▶ A new, synthetic formulation of plays up to Melliès’ homotopy,

which offers a nice framework to work with innocent strategies and

causal structures;

▶ The detailed correspondence between innocent strategies in HO
and sets of augmentations in PCG.

Positional injectivity. This framework allows us to answer Question 1
– or at least part of it. Using a proof technique inspired from [18], we

show that total finite innocent strategies are positionally injective. We also

show that in general, partial infinite innocent strategies are not positionally

injective, as we exhibit a counter-example. These results are both obtained

in PCG and then translated to HO games.

Main result [Chapter 4]:

▶ Total finite innocent strategies in HO games (and their counterparts

in PCG) are positionally injective.

Augmentations and normal resource terms. Since we wish to study

the links between the resource calculus and PCG, we start by looking at

augmentations and normal resource terms. The correspondence between

plays and terms featured in [40] relied on the relational collapse; we

show a more direct construction of augmentations from 𝛽-normal 𝜂-long

resource terms, answering Question 2.

Main result [Chapter 5]:

▶ Normal, 𝜂-long resource terms are isomorphic to (some isomor-

phism classes of) augmentations.



Introduction 7

Dynamics of PCG. Before answering Question 3, we need to extend our

game model with a composition – otherwise, PCG is barely a denotational

semantics at all! Suppose we want to compose an augmentation 𝑞 on an

arena A ⊢ B with an augmentation 𝑝 on B ⊢ C (if these notations make no

sense for now, think of the usual composition of functions 𝑔 ◦ 𝑓 , with

𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶 for𝐴, 𝐵, 𝐶 some sets). We study the interactions
between 𝑞 and 𝑝 occuring in B the shared arena component. Because

augmentations are not chronologically ordered, there can be several ways

to synchronize 𝑞 and 𝑝 so that they agree on what is happening in B.

Hence, the composition 𝑝 ⊙ 𝑞 is not a single augmentation, but a sum of

augmentations over every possible synchronizations. This is reminiscent

of the sum produced by the substitution in the resource calculus.

In HO games, strategies are sets of plays, and we know that augmentations

are related to plays. Hence it makes sense that strategies in PCG would

be some kind of objects representing “gathering several augmentations

together”. Unlike in HO however, strategies in PCG are not sets of aug-

mentations but rather sums with coefficients. This quantitative aspect

is important for future works: by taking coefficients into account in our

setting, we lay out the foundations to link PCG with other quantitative

models, for instance ones with probabilities. Moreover, resource terms are

obtained from usual 𝜆-terms via the Taylor expansion, an operation which

transforms a 𝜆-term into a sum of resource terms; we want coefficients

in PCG to be able to match those obtained via the Taylor expansion.

We now have a model with strategies and composition, which allows

us to study the categorical structure of PCG. Models of linear logic are

symmetric monoidal closed categories (or smcc’s for short), and the

resource calculus is inspired by linear logic; so we might expect PCG
to be at least a smcc if we are to find an interpretation of the resource

calculus in PCG – and indeed, we prove that it is a smcc.

Forgetting coefficients for a short time, we check that our correspondence

between innocent strategies in HO and (sets of) augmentations in PCG
is compatible with the composition – yielding a strict cartesian closed

functor between (the quantitative fragment of) PCG and HO.

Main results [Chapter 6]:

▶ A notion of composition taking into account coefficients and the

different ways to synchronize two augmentations;

▶ PCG is a category (with arenas as objects and strategies as mor-

phisms) with a closed symmetric monoidal structure;

▶ The correspondence between PCG and HO defined in Chapter 3 is

extended into a strict cartesian closed functor.

Categorical Structure and Resource Categories. In order to study

the interpretation of resource terms in PCG, we want to gain a better

understanding of its structure. We would like a categorical framework

enabling the characterization of morphisms behaving “linearly” in PCG,

to show that these morphisms are in bĳection with resource terms.

A first candidate would be the symmetric monoidal closed structure,

but this is not enough to properly define which morphisms in PCG
correspond to resource terms.



8 Introduction

[20]: Ehrhard and Regnier (2003), ‘The

differential lambda-calculus’

[22]: Ehrhard and Regnier (2008), ‘Uni-

formity and the Taylor expansion of or-

dinary lambda-terms’

[7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

[8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

resource

term 𝑠

J𝑠K

NF(𝑠) =
∑
𝑠′
𝑖

∑ ∥𝑠′
𝑖
∥

Normalisation

[Chap. 5]

Iso

[Chap. 5]

Interpretation

[Chap. 7 and 8]

=

[Chap. 8]

Figure 9: The interpretation behaves

nicely!

A second idea is to look as differential categories. Indeed, another extension

of 𝜆-calculus inspired by linear logic is the differential 𝜆-calculus, defined

in [20]. The name differential comes from the differentiation operation in

analysis. There, functions are approximated by their derivatives, obtained

through differentiation – the Taylor expansion of a function is the sum

of its derivatives. By analogy with analysis, the Taylor expansion of a

𝜆-terms in the differential 𝜆-calculus is the sum of its approximants,

obtained thanks to a formal differential operator. In [22], the authors

present the resource calculus as a sub-language of differential calculus.

Differential categories were introduced in [7] as a categorical framework

for differential linear logic. Does that mean we need to look for a differen-

tial categorical structure in PCG? Actually, strategies in games do not have

a linear behavior in general – so this approach is doomed to failure.

Our solution was to define resource categories, a categorical structure

built using similar constructions to differential categories (as presented

in [8]). Resource categories allow both for “non-linear” morphisms in

general (which are needed if we want PCG to be a resource category) and

for the characterisation of some “linear” morphisms (which will be the

target of the interpretation of resource terms).

Main results [Chapter 7]:

▶ A new categorical framework, featuring a few equations expressing

the behavior of morphisms corresponding to resource terms;

▶ A sound interpretation for the resource calculus;

▶ The links between resource categories and the notion of coderelic-

tion in differential categories.

PCG and the resource calculus. We check that PCG is indeed a closed

resource category. We can finally answer Question 3: resource terms

in general can be interpreted in PCG, following the interpretation for

resource categories. We show that the interpretation is compatible with

the isomorphism from Chapter 5 in the case of normal resource terms.

Main results [Chapter 8]:

▶ PCG is a closed resource category;

▶ In particular, we obtain a sound interpretation of resource terms in

PCG;

▶ This interpretation is compatible with the isomorphism for normal

terms defined in Chapter 5 (see Figure 9).



Introduction 9

Outline of the thesis

Preliminaries presents some useful mathematical notions:

Chapter 1 quickly summarizes some definitions on category theory

and calculi;

Chapter 2 gives a more detailed presentation of HO games.

An introduction to PCG showcases the first steps of the PCG model:

Chapter 3 defines positions and augmentations, as well as the link

with standard HO games;

Chapter 4 presents our result on positional injectivity.

Composition and resource calculus semantics studies the dynamical

aspects of PCG as well as the links with resource calculus:

Chapter 5 presents the static bĳection between PCG augmentations

and normal resource terms;

Chapter 6 defines the composition in PCG. We show that PCG is a

smcc, with a strict cartesian closed functor between PCG
and HO, compatible with the bĳection from Chapter 3;

Chapter 7 introduces resource categories. We define the interpreta-

tion of resource terms and prove its soundness. We also

study the links with differential categories;

Chapter 8 proves that PCG is a resource category, giving us an

interpretation of resource calculus in PCG. It coincides

with the bĳection of Chapter 5 for normal terms.

Preliminaries

Chapter 1

Chapter 2

An intro to PCG

Chapter 3

Chapter 4

Composition & resource calculus

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Figure 10: Chapter dependency diagram.

Dashed green arrowsd indicate chapters that might be useful; full red arrows→ indicate chapters that are definitely needed.





Preliminaries



12

In this part, we present several mathematical notions.

In Chapter 1, we give some categorical definitions and we introduce 𝜆-calculus
and resource calculus. This chapter is not intended to be a tutorial and is mostly
meant for clarifying notations and definitions.

In Chapter 2, we present the traditional Hyland Ong games. This chapter intends
to be pedagogical and to explain games semantics from the start.



[32]: Mac Lane (1971), Categories for the
Working Mathematician

Reminders: Categories,
𝜆-calculus and Resource calculus 1

1.1 Categorical Preliminaries 13
1.2 Lambda-calculus . . . . . 16
1.3 Resource calculus . . . . . 19

This chapter summarizes a few notions that are important for this body

of work. We expect the reader to be already somewhat familiar with

category theory and 𝜆-calculus, as this chapter is not meant to be a

complete introduction to these.

First, we remind some useful categorical notions in Section 1.1. Then

we state a few definitions and properties of 𝜆-calculus – first the usual

𝜆-calculus in Section 1.2, then the resource 𝜆-calculus in Section 1.3.

1.1 Categorical Preliminaries

This section presents some categorical notions which are used throughout

this document: symmetric monoidal closed categories, string diagrams,

and (co)monoids. We direct the interested reader to [32] for an introduc-

tion to category theory.

1.1.1 Symmetric Monoidal Closed Categories

As mentionned in the introduction, we will be particularly interested in

smcc’s. A monoidal category is a category equipped with a tensor.

Definition 1.1 – Monoidal Category

A monoidal category is a category C equipped with:

▶ a functor ⊗ : C× C→ C called the tensor;
▶ an object 𝐼 ∈ C called the unit;
▶ the following isomorphisms natural in 𝐴, 𝐵, 𝐶:

associator: 𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶)
left-unitor: 𝜆𝐴 : 𝐼 ⊗ 𝐴→ 𝐴

right-unitor: 𝜌𝐴 : 𝐴 ⊗ 𝐼 → 𝐴

such that for any objects 𝐴, 𝐵, 𝐶, 𝐷, we have:

triangle identity: (id𝐴 ⊗ 𝜆𝐵) ◦ 𝛼𝐴,𝐼,𝐵 = 𝜌𝐴 ⊗ id𝐵

and the diagram of Figure 1.1 commutes.

((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷 (𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷)

(𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷 𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))

𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

𝛼𝐴⊗𝐵,𝐶,𝐷

𝛼𝐴,𝐵,𝐶 ⊗ id𝐷 𝛼𝐴,𝐵,𝐶⊗𝐷

𝛼𝐴,𝐵⊗𝐶,𝐷 id𝐴 ⊗ 𝛼𝐵,𝐶,𝐷

Figure 1.1: Pentagon identity.



14 1 Reminders: Categories, 𝜆-calculus and Resource calculus

(𝐴 ⊗ 𝐵) ⊗ 𝐶 𝐴 ⊗ (𝐵 ⊗ 𝐶) (𝐵 ⊗ 𝐶) ⊗ 𝐴

(𝐵 ⊗ 𝐴) ⊗ 𝐶 𝐵 ⊗ (𝐴 ⊗ 𝐶) 𝐵 ⊗ (𝐶 ⊗ 𝐴)

𝛼𝐴,𝐵,𝐶 𝜎𝐴,𝐵⊗𝐶

𝜎𝐴,𝐵 ⊗ 𝐶

𝛼𝐵,𝐴,𝐶 𝐵 ⊗ 𝜎𝐴,𝐶

𝛼𝐵,𝐶,𝐴

Figure 1.2: Hexagon identity.

[31]: Mac Lane (1963), ‘Natural Associa-

tivity and Commutativity’

[32]: Mac Lane (1971), Categories for the
Working Mathematician

C C

_ ⊗ 𝐴

𝐴⇒ _

⊢

Figure 1.3: SMCC.

[28]: Joyal and Street (1991), ‘The geome-

try of tensor calculus, I’

[39]: Selinger (2010), ‘A Survey of Graph-

ical Languages for Monoidal Categories’

𝑔 ◦ 𝑓 =

𝐴

𝑓

𝑔

𝐶

Figure 1.4: Composition.

If a monoidal category comes with a notion of commutativity of this

tensor, it is additionally symmetric.

Definition 1.2 – Symmetric Monoidal Category

A symmetric monoidal category (or smc for short) is a monoidal

category (C,⊗, 𝐼) equipped with an isomorphism natural in 𝐴, 𝐵:

symmetry: 𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵→ 𝐵 ⊗ 𝐴

such that for any objects 𝐴, 𝐵, 𝐶, we have:

symmetry with unit: 𝜆𝐴 ◦ 𝜎𝐴,𝐼 = 𝜌𝐴
symmetry with tensor: 𝜎𝐵,𝐴 ◦ 𝜎𝐴,𝐵 = id𝐴⊗𝐵

and the diagram of Figure 1.2 commutes.

In this chapter, all categories are assumed equipped with a symmetric

monoidal structure (using ⊗ for the tensor and 𝐼 for the unit), unless

stated otherwise.

For the sake of readability, we mostly treat associator and unitors as iden-

tities, as justified by Mac Lane’s coherence theorem (see [31, Theorem 5.2]

for the historical statement and [32, Chapter 7] for the more standard,

textbook version).

Finally, we define symmetric monoidal closed categories.

Definition 1.3 – Symmetric Monoidal Closed Category

A symmetric monoidal closed category (or smcc) is an smc (C,⊗, 𝐼)
such that for all 𝐴, the functor _ ⊗ 𝐴 : C→ Chas a right adjoint

(as in Figure 1.3).

1.1.2 String diagrams

We use string diagrams, read from top to bottom, for a graphical represen-

tation of some categorical equations (see [28] for a historical introduction

and [39] for a survey of graphical languages).

Composition. Given two morphisms 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶, the

composition 𝑔 ◦ 𝑓 : 𝐴→ 𝐶 is presented in Figure 1.4.



1.1 Categorical Preliminaries 15

𝑓 ⊗ 𝑔 =

𝐴

𝑓

𝐵

𝐶

𝑔

𝐷

Figure 1.5: Tensor.

𝜎𝐴,𝐵 =

𝐴 𝐵

𝐵 𝐴

Figure 1.6: Symmetry.

! 𝑓 =

!𝐴

𝑓

!𝐵

Figure 1.7: ! 𝑓 .

[7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

Tensor. The tensor of 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐶 → 𝐷 is represented using two

wires side by side as in Figure 1.5.

Symmetry. The symmetry morphism is represented by crossing the wires

as in Figure 1.6.

We often omit the labels on wires if they are clear from the context; we

also omit 𝐼 wires because we treat unitors as identities.

Exponential. The last section of Chapter 7 features differential categories,

equipped with the endofunctor !. Following [7], for any morphism

𝑓 : 𝐴 → 𝐵 we represent ! 𝑓 : !𝐴 → !𝐵 with a squared box around 𝑓 , as

in Figure 1.7.

1.1.3 Monoids and Comonoids

Finally, the construction of resource categories (Chapter 7) will involve

commutative (co)monoids.

Definition 1.4 – Monoid

A monoid in an smc C is an object 𝐴 equipped with:

multiplication: 𝜇𝐴 : 𝐴 ⊗ 𝐴→ 𝐴

unitor: 𝜂𝐴 : 𝐼 → 𝐴

satisfying the following equations:

associativity of 𝜇: 𝜇𝐴 ◦
(
𝜇𝐴 ⊗ id𝐴

)
= 𝜇𝐴 ◦

(
id𝐴 ⊗ 𝜇𝐴

)
neutrality of 𝜂: 𝜇𝐴 ◦

(
𝜂𝐴 ⊗ id𝐴

)
= id𝐴 = 𝜇𝐴 ◦

(
id𝐴 ⊗ 𝜂𝐴

)
which are presented in the string diagrams of Figure 1.8.

Definition 1.5 – Commutative monoid

A monoid (𝐴, 𝜇𝐴 , 𝜂𝐴) is commutative if it satisfies:

commutativity: 𝜇𝐴 ◦ 𝜎𝐴,𝐴 = 𝜇𝐴 .

𝜇𝐴

𝜇𝐴

= 𝜇𝐴

𝜇𝐴

(a) Associativity of 𝜇.

𝜂𝐴

𝜇𝐴

= = 𝜂𝐴

𝜇𝐴

(b) Neutrality of 𝜂.

Figure 1.8: Monoid laws.



16 1 Reminders: Categories, 𝜆-calculus and Resource calculus

𝛿𝐴

𝛿𝐴

= 𝛿𝐴

𝛿𝐴

(a) Associativity of 𝛿.

𝛿𝐴

𝜀𝐴

= = 𝛿𝐴

𝜀𝐴

(b) Neutrality of 𝜀.

Figure 1.9: Comonoid laws.

[2]: Barendregt (1984), The lambda calculus
- its syntax and semantics

Dually, we define (commutative) comonoids.

Definition 1.6 – Comonoid

A comonoid in an smc C is an object 𝐴 equipped with:

co-multiplication: 𝛿𝐴 : 𝐴→ 𝐴 ⊗ 𝐴
co-unitor: 𝜀𝐴 : 𝐴→ 𝐼

satisfying the equations of Figure 1.9.

Definition 1.7 – Commutative comonoid

A comonoid (𝐴, 𝛿𝐴 , 𝜀𝐴) is commutative if it satisfies:

commutativity: 𝜎𝐴,𝐴 ◦ 𝛿𝐴 = 𝛿𝐴 .

1.2 Lambda-calculus

We briefly state a few definitions and properties of 𝜆-calculus; we direct

the interested reader to [2] for a detailed introduction.

1.2.1 Terms of 𝜆-calculus

Terms represent programs – or proofs of propositions, following Curry-

Howard isomorphism.

Definition 1.8 – 𝜆-terms

Consider a (countable) set of variables 𝑥, 𝑦, 𝑧, . . . ∈ V.

We define 𝜆-terms, written 𝑀, 𝑁, 𝐿, . . . ∈ Λ, with:

𝑀, 𝑁, 𝐿, . . . F 𝑥 (variable)
| 𝜆𝑥.𝑀 (abstraction)
| 𝑀 𝑁 (application)



1.2 Lambda-calculus 17

Example: Consider the term

𝑀 := 𝜆𝑥.(𝑥 𝑦) .

It has two variables

𝑉(𝑀) = {𝑥, 𝑦} ,

including one free variable

𝐹𝑉(𝑀) = {𝑦} .

Example: Consider the terms

𝑀 = 𝜆𝑦.𝑥 𝑦 and 𝑁 = 𝑧 .

Then the substitution 𝑀[𝑁/𝑥] is

𝑀[𝑁/𝑥] = 𝜆𝑦.𝑧 𝑦 .

Intuitively, an abstraction “𝜆𝑥.𝑀” is to be understood as “𝑥 ↦→ 𝑀”,

i. e. “the program which asks for an argument 𝑥 and then executes the

subprogram 𝑀”. A term of the form 𝑀 𝑁 is an application, i. e. “the

subprogram 𝑀 is called with the subprogram 𝑁 as its argument”.

1.2.2 Free and bound variables

Consider a term 𝑀 and a variable 𝑥 occurring in 𝑀.

▶ If 𝑥 appears in a subprogram of 𝑀 starting with the abstraction

𝜆𝑥, we say 𝑥 is bound.

▶ Otherwise, if 𝑥 is unbound, we say that 𝑥 is a free variable in 𝑀,

noted 𝑥 ∈ 𝐹𝑉(𝑀).

The notion of free and bound variables is a key one: intuitively, the

name of bound variables should not matter. Consider for instance the

functions:

𝑓1 : 𝑥 ↦→ 𝑥 𝑓2 : 𝑦 ↦→ 𝑦

then surely we want our calculus model to express that 𝑓1 and 𝑓2 have

the same behavior. These functions translate to the following 𝜆-terms:

𝑀1 = 𝜆𝑥.𝑥 𝑀2 = 𝜆𝑦.𝑦

so we would like an equivalence relation equating 𝑀1 and 𝑀2.

Definition 1.9 – 𝛼-equivalence

The 𝛼-equivalence is the least congruence relation =𝛼 such that:

𝜆𝑥.𝑀 =𝛼 𝜆𝑦.𝑀′

where 𝑀,𝑀′ ∈ Λ, 𝑥, 𝑦 ∈ V, and we ask

▶ 𝑦 ∉ 𝑉(𝑀) (we say 𝑦 is a fresh variable),

▶ 𝑀′ is the 𝜆-term written like 𝑀 where each occurrence of 𝑥

is replaced by 𝑦.

Unless specified otherwise, we consider terms up to 𝛼-equivalence.

1.2.3 Substitution

The dynamics of 𝜆-calculus relies on the notion of substitution: given a

term 𝑀 using the argument 𝑥 and another term 𝑁 , one can substitute
every occurrence of 𝑥 in 𝑀 by a copy of 𝑁 .

Definition 1.10 – Substitution

Consider two terms 𝑀, 𝑁 ∈ Λ and a variable 𝑥 ∈ V.

The substitution 𝑀[𝑁/𝑥] is the 𝜆-term written like 𝑀 but where

each free occurrence of 𝑥 is replaced by 𝑁 .



18 1 Reminders: Categories, 𝜆-calculus and Resource calculus

(𝜆𝑥. 𝑀)𝑁 →𝛽 𝑀[𝑁/𝑥]
𝑀 →𝛽 𝐿

𝜆𝑥.𝑀 →𝛽 𝜆𝑥.𝐿

𝑀 →𝛽 𝐿

𝑀 𝑁 →𝛽 𝐿 𝑁

𝑁 →𝛽 𝐿

𝑀 𝑁 →𝛽 𝑀 𝐿

Figure 1.10: 𝛽-reduction rules.

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴→ 𝐵

Γ ⊢ 𝑀 : 𝐴→ 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵

Figure 1.11: Typing rules (for simply typed 𝜆-calculus).

Example: Consider (𝜆𝑥.𝑥 𝑥) (𝜆𝑦.𝑦). We

have the following 𝛽-reductions:

(𝜆𝑥.𝑥 𝑥) (𝜆𝑦.𝑦)
→𝛽 (𝜆𝑦.𝑦) (𝜆𝑦.𝑦)
→𝛽 𝜆𝑦.𝑦

1.2.4 Reduction

The other fundamental rule of 𝜆-calculus is the 𝛽-reduction: given an

abstraction 𝜆𝑥.𝑀 and a term 𝑁 , the operation “applying 𝜆𝑥.𝑀 to 𝑁” is

substituting every occurrence of 𝑥 in 𝑀 by a copy of 𝑁 .

Definition 1.11 – 𝛽-reduction

Consider 𝜆𝑥.𝑀, 𝑁 ∈ Λ. Then we define the 𝛽-reduction with:

(𝜆𝑥.𝑀) 𝑁 →𝛽 𝑀[𝑁/𝑥]

and the relation is extended with the rules of Figure 1.10.

The 𝛽-reduction gives us a notion of execution: one reduction represents

one step of computation.

Additionnally, the 𝛽-reduction is confluent, ensuring the unicity of the
normal form (if it exists).

Proposition 1.12 – Confluence of 𝛽-reduction

For any 𝜆-terms 𝑀, 𝑁1, 𝑁2, if 𝑀 →∗𝛽 𝑁1 and 𝑀 →∗𝛽 𝑁2, then

there exists 𝐿 such that 𝑁1 →∗𝛽 𝐿 and 𝑁2 →∗𝛽 𝐿.

1.2.5 Simple types

Types in 𝜆-calculus act as programming types: they inform on the nature

of the program (or term). In this thesis, we only consider simple types.

Definition 1.13 – Simple types

Simple types are given by a base type 𝛼 and the following grammar:

𝐴, 𝐵, . . .F 𝛼 | 𝐴→ 𝐵 .

The type 𝐴→ 𝐵 represents “functions from 𝐴 to 𝐵”.

Terms are typed following typing rules from Figure 1.11, where Γ is a

typing context, i. e. a set of typed variables of the form 𝑥 : 𝐴.



1.3 Resource calculus 19

[22]: Ehrhard and Regnier (2008), ‘Uni-

formity and the Taylor expansion of or-

dinary lambda-terms’

1.3 Resource calculus

We now present a few notions regarding resource calculus. The definitions

mostly follow the ones from [22], but we will be using a sligthly different

type system, which will be introduced in Chapter 5.

1.3.1 Preliminaries on tuples and bags

Tuples. If 𝑋 is a set, we write 𝑋∗ for the set of finite lists, or tuples, of

elements of 𝑋, ranged over by ®𝑎, ®𝑏, etc. We write ®𝑎 = ⟨𝑎1 , . . . , 𝑎𝑛⟩ to list

the elements of ®𝑎, of length |®𝑎| = 𝑛. The empty list is ⟨⟩, and concatenation

is simply juxtaposition, e.g., ®𝑎®𝑏.

Multisets. We write M𝑓 (𝑋) for the set of finite multisets of elements of

𝑋 , which we call bags, ranged over by 𝑎̄ , 𝑏, etc. We write 𝑎̄ = [𝑎1 , . . . , 𝑎𝑛]
for the bag induced by the list ®𝑎 = ⟨𝑎1 , . . . , 𝑎𝑛⟩ of elements: we then say

®𝑎 is an enumeration of 𝑎̄ in this case. We write [] for the empty bag, and

use ∗ for bag concatenation. We also write |𝑎̄| for the size of 𝑎̄: |𝑎̄| is the

length of any enumeration of 𝑎̄.

Partitions. We shall often need to partition bags, which requires some

care because of the possible duplications. For 𝑎̄ ∈ M𝑓 (𝑋) and 𝑘 ∈ ℕ, a

𝑘-partitioning of 𝑎̄, written 𝑝 : 𝑎̄ ◁ 𝑘, is a function

𝑝 : {1, . . . , |𝑎̄|} → {1, . . . , 𝑘} .

Given an enumeration ⟨𝑎1 , . . . , 𝑎𝑛⟩ of 𝑎̄, the associated 𝑘-partition is the

tuple ⟨𝑎̄ ↾𝑝 1, . . . , 𝑎̄ ↾𝑝 𝑘⟩, where we set

𝑎̄ ↾𝑝 𝑖 = [𝑎 𝑗 | 𝑝(𝑗) = 𝑖] for 1 ≤ 𝑖 ≤ 𝑘

so that 𝑎̄ = 𝑎̄ ↾𝑝 1 ∗ · · · ∗ 𝑎̄ ↾𝑝 𝑘. The obtained 𝑘-partition does depend on

the chosen enumeration of 𝑎̄ but, for any function 𝑓 : M𝑓 (𝑋)𝑘 → 𝕄 with

values in a commutative monoid 𝕄 (noted additively), the sum∑
𝑎̄◁𝑎̄1∗···∗𝑎̄𝑘

𝑓 (𝑎̄1 , . . . , 𝑎̄𝑘)
def

=
∑
𝑝 : 𝑎̄◁𝑘

𝑓 (𝑎̄ ↾𝑝 1, . . . , 𝑎̄ ↾𝑝 𝑘)

is independent from the enumeration. When indexing a sum with

𝑎̄ ◁ 𝑎̄1 ∗ · · · ∗ 𝑎̄𝑘 we thus mean to sum over all partitionings 𝑝 : 𝑎̄◁ 𝑘, using

𝑎̄𝑖 as a shorthand for 𝑎̄ ↾𝑝 𝑖 in each summand.

Sequences. We will also consider tuples of bags: we write 𝒮 [𝑋] for

M𝑓 (𝑋)∗. We denote elements of 𝒮 [𝑋] as ®𝑎, ®𝑏, etc. just like for plain tuples,

but we reserve the name sequence for such tuples of bags.

1.3.2 Terms of the resource calculus

The terms of the resource calculus, as presented in [22], are called resource
terms. They are just like ordinary 𝜆-terms, except that the argument in

an application is a bag of terms instead of just one term.



20 1 Reminders: Categories, 𝜆-calculus and Resource calculus

Remark: Resource terms are also consid-

ered up to 𝛼-equivalence.

Notation: We use an extension of syn-

tactic constructs to finite sums of expres-

sions: for 𝑆 =
∑
𝑖∈𝐼 𝑠𝑖 and 𝑇̄ =

∑
𝑗∈𝐽 𝑡 𝑗 ,

we set:

𝜆𝑥.𝑆
def

=
∑
𝑖∈𝐼

𝜆𝑥.𝑠𝑖 ,

[𝑆] ∗ 𝑇̄ def

=
∑
𝑖∈𝐼

∑
𝑗∈𝐽
[𝑠𝑖] ∗ 𝑡 𝑗 ,

𝑆 𝑇̄
def

=
∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑠𝑖 𝑡 𝑗 .

Definition 1.14 – Resource terms

Consider a (countable) set of variables 𝑥, 𝑦, 𝑧, . . . ∈ V. We define

resource terms, written 𝑠, 𝑡 , 𝑢, . . . ∈ Δ, and resource bags, written

𝑠, 𝑡 , 𝑢̄ , . . . ∈ Δ̄, with:

𝑠, 𝑡 , 𝑢, . . .F 𝑥 | 𝜆𝑥.𝑠 | 𝑠 𝑡
𝑠, 𝑡 , 𝑢̄ , . . .F [𝑠1 , . . . , 𝑠𝑛] .

1.3.3 Substitution

The dynamics relies on a multilinear variant of substitution, that we will

call resource substitution: a redex (𝜆𝑥.𝑠) 𝑡 reduces to a formal finite

sum 𝑠⟨𝑡/𝑥⟩ of terms, each summand being obtained by substituting each

occurrence of 𝑥 in 𝑠 with exactly one element of 𝑡.

Definition 1.15 – Resource substitution

Resource substitution is defined inductively with:

𝑦⟨𝑡/𝑥⟩ def

=


𝑡 if 𝑦 = 𝑥 and 𝑡 = [𝑡]
𝑦 if 𝑦 ≠ 𝑥 and 𝑡 = []
0 otherwise

(𝜆𝑧.𝑠)⟨𝑡/𝑥⟩ def

= 𝜆𝑧.(𝑠⟨𝑡/𝑥⟩)
(𝑠 𝑢̄)⟨𝑡/𝑥⟩ def

=
∑
𝑡◁𝑡1∗𝑡2

(𝑠⟨𝑡1/𝑥⟩) (𝑢̄⟨𝑡2/𝑥⟩)

[𝑠1 , . . . , 𝑠𝑛]⟨𝑡/𝑥⟩
def

=
∑

𝑡◁𝑡1∗···∗𝑡𝑛
[𝑠1⟨𝑡1/𝑥⟩, . . . , 𝑠𝑛⟨𝑡𝑛/𝑥⟩]

where 𝑧 is chosen fresh in the abstraction case.

The actual protagonists of the calculus are thus sums of terms rather than

single terms. We will generally write Σ[𝑋] for the set of finite formal

sums on set 𝑋 – those may be considered as finite multisets, but we adopt

a distinct additive notation to avoid confusion with bags.

Resource substitution is in turn extended by linearity, setting

𝑆⟨𝑇̄/𝑥⟩ def

=
∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑠𝑖⟨𝑡 𝑗/𝑥⟩

with the same notations as above.

1.3.4 Resource reduction

The reduction of resource terms{ ⊆ Δ×Σ[Δ] is defined inductively by

the rules of Figure 1.12 – simultaneously with the reduction of resource

bags{ ⊆ Δ̄×Σ[Δ̄]. It is extended to{ ⊆ Σ[Δ]×Σ[Δ] by setting 𝑆 { 𝑆′

whenever 𝑆 = 𝑡 +𝑈 and 𝑆′ = 𝑇′ +𝑈 with 𝑡 { 𝑇′.

Unlike the reduction in the usual 𝜆-calculus, the reduction{ is strongly
normalizing, i. e. there is no infinite sequence of redutions.



1.3 Resource calculus 21

(𝜆𝑥.𝑠) 𝑡 { 𝑠⟨𝑡/𝑥⟩
𝑠 { 𝑆′

𝜆𝑥.𝑠 { 𝜆𝑥.𝑆′
𝑠 { 𝑆′

𝑠 𝑡 { 𝑆′ 𝑡

𝑠 { 𝑆′

[𝑠] ∗ 𝑡 { [𝑆′] ∗ 𝑡
𝑡 { 𝑇̄′

𝑠 𝑡 { 𝑠 𝑇̄′

Figure 1.12: Rules of resource reduction.

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑠 : 𝐵

Γ ⊢ 𝜆𝑥.𝑠 : 𝐴→ 𝐵

Γ ⊢ 𝑠 : 𝐴→ 𝐵 Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑠 𝑡 : 𝐵

Γ ⊢ 𝑡1 : 𝐴 . . . Γ ⊢ 𝑡𝑛 : 𝐴

Γ ⊢ [𝑡1 , . . . , 𝑡𝑛] : 𝐴

Figure 1.13: Typing rules for resource calculus.

[40]: Tsukada and Ong (2016), ‘Plays as

Resource Terms via Non-idempotent In-

tersection Types’

Theorem 1.16 – (see [22, Theorem 9] [22]: Ehrhard and Regnier (2008), ‘Uni-

formity and the Taylor expansion of or-

dinary lambda-terms’

)

The reduction{ on Σ[Δ] is confluent and strongly normalizing.

1.3.5 Typing rules

We use simple types as in Definition 1.13.

The usual typing rules are given in Figure 1.13.

Notation (priority rules): We write 𝐴→ 𝐵→ 𝐶 for 𝐴→ (𝐵→ 𝐶).
When constructing a bĳection between resource calculus and games, we

consider terms that are in normal form, and that are 𝜂-long.

Definition 1.17 – 𝜂-expansion

Consider a normal resource term 𝑠 of type 𝐴1 → . . .→ 𝐴𝑛 → 𝛼.

We say 𝑠 is 𝜂-long if it has the shape:

𝜆𝑥1. . . .𝜆𝑥𝑛 . 𝑡

with 𝑡 a (normal) term of type 𝛼, and each subterm of t is 𝜂-long,

recursively.

In Chapter 5, we consider a modified version of the typing rules, con-

structed to ensure that normal terms are always 𝜂-long. Nonetheless, we

give the rules of Figure 1.13 in order to describe the bĳection between

resource calculus and HO games from [40].





[27]: Hyland and Ong (2000), ‘On Full

Abstraction for PCF: I, II, and III’

Introduction to Hyland-Ong
Games 2

2.1 Arenas . . . . . . . . . . . . 23
2.2 Plays . . . . . . . . . . . . . 26
2.3 Strategies . . . . . . . . . . 30
2.4 Composition . . . . . . . . 32
2.5 HO and HOInn . . . . . . . 33
2.6 Links with the resource

calculus . . . . . . . . . . . 35

In this chapter, we introduce HO games, which will be our starting point

for the question of positional injectivity in the next chapter.

If the reader is not familiar with game semantics, it might help to keep in

mind the following correspondences between games and programs:

Arenas ←→ Types
(the rules of the game)

Plays ←→ Executions
(one iteration of the game)

Strategies ←→ Programs
(a set of several plays)

2.1 Arenas

Our first objects of interest in game semantics are arenas, representing

types – they set “the rules” of the game, i. e. they list all computational

events available to Player and Opponent given the type of the program

being computed.

2.1.1 Definition

An arena is a set of moves (the possible events) which are polarized
(indicating if the move is playable by Opponent or by Player) and partially

ordered (following causal dependencies of interactions). More formally:

Notation: We define the immediate
causality relation _A with:

For all a, b ∈ |A|, a _A b iff:

▶ a <A b,

▶ for any c ∈ |A|, if a ≤A c ≤A b,

then a = c or b = c.

Definition 2.1 – Arena

An arena is A = ⟨|A|,≤A , polA⟩ with:

▶ |A| is a countable set of moves,

▶ ≤A is a partial order over |A|,
▶ polA : |A| → {−,+} is a polarity function.

Moreover, these data must satisfy the following conditions:

finitary: for all a ∈ |A|, [a]A = {a′ ∈ |A| | a′ ≤A a} is finite,

forestial: for all a1 , a2 ≤A a, either a1 ≤A a2 or a2 ≤A a1,

alternating: for all a1 _A a2, polA(a1) ≠ polA(a2).

where a1 _A a2 means a1 <A a2 with no move strictly in between.

Though our notations differ superficially, our arenas are similar to those

presented in [27]. As in concurrent games, we use + and − for polarities

instead of 𝑂 and 𝑃: positive moves are due to Player / the program, and

negative moves to Opponent / the environment.



24 2 Introduction to Hyland-Ong Games

a−

b+ c+

d−

Figure 2.1: An arena A.

q−

T+ F+

Figure 2.2: Arena bool.

q−

0
+

1
+

2
+ . . .

Figure 2.3: Arena nat.

q+ q−

Figure 2.4: A non negative (nor positive)

and non well-opened arena.

For any arena A and move a ∈ |A|, we write a− (respectively a+) as a

shortcut for “a s.t. polA(a) = −” (respectively polA(a) = +).

Thanks to finitarity, ≤A can be recovered from _A, so we draw only the

immediate causality in graphical representations of arenas. Consider as

an example the arena A from Figure 2.1. We read this diagram in the

following way:

▶ |A| = {a, b, c, d},
▶ _A is represented by dashed lines, read from top to bottom,

▶ for all e ∈ |A|, polA(e) is indicated by the superscript of 𝑒.

In most diagrams, we also use the convention orange for Opponent /

negative moves, and blue for Player / positive moves.

We show in Figure 2.2 the representation of the data type bool as an arena:

Opponent initiates the execution with q−, the initial query requesting the

value of a boolean. Player may respond with T+ (true) or F+ (false).

Another example is presented in Figure 2.3: given a program of type nat,
its possible interactions with its environment are:

▶ being called by the environment (q−),

▶ reacting with its value (any 𝑛+ with 𝑛 ∈ ℕ).

Notation: We write I for the empty arena and o for the arena with exactly

one negative move q−.

We define additional conditions on arenas:

Definition 2.2 – Well-opened arena

An arena A is well-opened if it has exactly one minimal move, i. e.:

min(A) = {a ∈ |A| | a is minimal for ≤A}

is a singleton.

If A is well-opened, its only minimal move is the initial move,

written init(A).

Definition 2.3 – Negative (and positive) arenas

An arena A is negative if polA(min(A)) = {−}.
Likewise, an arena A is positive if polA(min(A)) = {+}.

All arenas presented so far were negative and well-opened. This is not a

requirement for arenas: Figure 2.4 for example shows an arena that is

neither negative nor well-opened.

However, arenas in HO games are usually negative, hence in the rest
of this chapter, all arenas are assumed to be negative, unless stated
otherwise.

Since this not the case for PCG arenas, we did not ask for negativity in

the definition of arenas, to allows us to use the same arena definition for

both game models.



2.1 Arenas 25

Notation: For any two sets 𝐸1 and 𝐸2,

their disjoint union is:

𝐸1 + 𝐸2 = {(𝑖 , 𝑒) | 𝑖 = 1, 2 and 𝑒 ∈ 𝐸𝑖} .

Remark: In the HO games category, the

product A ⊗ B is a cartesian product –

hence its name. However, we use the no-

tation A⊗B, instead of the usual notation

A × B, because this construction will be

shown to be a tensor in the (symmetric

monoidal) category of PCG.

(1, q)−

(1, 0)+ (1, 1)+ . . .

(2, q)−

(2, T)+ (2, F)+

Figure 2.5: Arena nat ⊗ bool.

q−

0
+

1
+ . . .q+

T− F−

Figure 2.6: Arena bool⇒ nat.

(𝛼 𝛼) 𝛼 𝛼

q−

q+q+

q−

Figure 2.7: Arena (o⇒ o) ⇒ o⇒ o.

2.1.2 Constructors on arenas

More elaborate types involve matching constructions: the product and

the arrow.

The product of two arenas simply places both arenas side by side.

Definition 2.4 – Product of arenas

Consider A1 and A2 two arenas. Their product A1 ⊗ A2 is the arena

defined with:

|A1 ⊗ A2| = |A1| + |A2| ,
(𝑖 , a) ≤A1⊗A2

(𝑖 , b) ⇔ a ≤A𝑖 b ,
polA1⊗A2

((𝑖 , a)) = polA𝑖 (a) .

It is immediate that A1 ⊗ A2 also is an arena.

For any family (A𝑖)𝑖∈𝐼 of arenas, this extends to

∏
𝑖∈𝐼 A𝑖 in the obvious

way. Any arena A decomposes (up to forest isomorphism) as A �
∏

𝑖∈𝐼 A𝑖
for some family (A𝑖)𝑖∈𝐼 of well-opened arenas.

We now define the arrow constructor: given two arenas A and B with B
well-opened, the arrow arena A ⇒ B is similar to the product, but we

invert polarities of moves from A and add a causal dependency from the

moves of A to the initial move of B.

Definition 2.5 – Arrow

Consider A1 , A2 two arenas with A2 well-opened.

We define A1 ⇒ A2 with:

|A1 ⇒ A2| = |A1| + |A2| ,
(𝑖 , a) ≤A1⇒A2

(𝑗 , b) ⇔ 𝑖 = 𝑗 and a ≤A𝑖 b ,
or (𝑗 , b) = (2, init(A2)) ,

polA1⇒A2

((𝑖 , a)) = −polA1

(a) if 𝑖 = 1 ,

polA2

(a) if 𝑖 = 2 .

Again, it is clear that A1 ⇒ A2 is a (well-opened) arena.

Figure 2.6 displays the arena A = bool⇒ nat. Once Opponent initiates

the computation with q−, two types of Player moves become available:

Player may react by giving directly an integer (𝑛+), or they can choose to

evaluate their argument (q+), which in turn allows Opponent to react

with a boolean (T− or F−). Remark that we represent moves as the moves

from their arena component, without the tags coming from the disjoint

union. The moves of A are actually:

|A| = {(1, q), (1, T), (1, F), (2, q), (2, 0), (2, 1), (2, 2), . . .},

but we often omit tags in graphical representations for readability.

For any arenas A, B and C, we read A⇒ B⇒ C as A⇒ (B⇒ C). We can

now interpret any simple type, using o for the base type 𝛼 and the arrow

constructor for higher-order types. For instance, Figure 2.7 displays the

arena (o⇒ o) ⇒ o⇒ o, matching the simple type (𝛼→ 𝛼) → 𝛼→ 𝛼



26 2 Introduction to Hyland-Ong Games

Opponent

 

Player

y

n + m = ?

n = ?

n = 5

m = ?

m = 3

n + m = 8

Figure 5: A play for “5+3 = 8”

a c a b

Figure 2.9: A pointing string.

with atomic type 𝛼 – where each move is placed under the atom of the

type it comes from.

Let us go back to our introductory example (Figure 5). The program

corresponding to the addition of two integers lives in the following

arena:

q−

0
+

1
+ . . .q+

0
−

1
− . . .

q+

0
−

1
− . . .

Figure 2.8: Arena nat⇒ nat⇒ nat.

Remark that this arena A = nat⇒ nat⇒ nat is isomorphic to the arena

A′ = (nat⊗ nat) ⇒ nat; the only difference being the tags of moves, which

are not represented in Figure 2.8. For instance, (2, (2, q)) the initial move

of A would become (2, q) in A′.

2.2 Plays

Next we define plays, corresponding to program executions: a play is a

particular iteration of the game, following the rules given by the arena.

2.2.1 Definition

In Hyland-Ong games, players are allowed to backtrack, and resume the

play from any earlier stage. This is made formal by the notion of pointing
strings, which are sequences of moves with optional pointers from moves

to earlier moves (representing causal dependencies).

Definition 2.6 – Pointing String

A pointing string over a set of moves Σ is a string 𝑠 ∈ Σ∗, where

each move may additionally come equipped with a pointer to an

earlier move.

Figure 2.9 shows a pointing string over {a, b, c, d}, read from left to right.

Pointers are indicated by dashed lines:

▶ the first move a has no pointer,

▶ the second move c points to the first move a,

▶ the third move a has no pointer,

▶ the fourth move b points to the first move a.

For any pointing string 𝑠, we often write 𝑠 = 𝑠1 . . . 𝑠𝑛 where 𝑠𝑖 is the 𝑖-th

move of 𝑠, and pointers are left implicit. The length of 𝑠, denoted by |𝑠|, is

the number 𝑛 of moves in 𝑠. We write 𝜀 for the pointing string of length 0.

For any 𝑠 of length 𝑛, for any 𝑘 ≤ 𝑛, we define 𝑠[1 : 𝑘] = 𝑠1 . . . 𝑠𝑘 (where

we keep the pointers). We say 𝑠[1 : 𝑘] is a prefix of 𝑠, written 𝑠[1 : 𝑘] ⊑ 𝑠.



2.2 Plays 27

𝑎−

𝑏+ 𝑐+

𝑑−

Figure 2.1: An arena A.

Opponent

 

Player

y

n + m = ?

n = ?

n = 5

m = ?

m = 3

n + m = 8

Figure 5: A “play” for “5+3 = 8”

q q1 5
q2 3 8

Figure 2.10: “5+3 = 8” as an actual play

1: Recall that these moves are actually

(1, q) and (2, (1, q)) – we simply write q1

and q2, and drop the other tags, to avoid

an overdecorated diagram.

For instance, the prefixes of the pointing string 𝑠 from Figure 2.9 are:

𝑠[1 : 0] = 𝜀,

𝑠[1 : 1] = a,

𝑠[1 : 2] = a c,

𝑠[1 : 3] = a c a,

𝑠[1 : 4] = a c a b.

Executions of programs will be represented by pointing strings over the

arena moves, with additional conditions.

Definition 2.7 – Play

Consider an arena A. A play on A is a pointing string 𝑠 = 𝑠1 . . . 𝑠𝑛
over A with the following properties:

rigid: if 𝑠𝑖 points to 𝑠 𝑗 , then 𝑠 𝑗 _A 𝑠𝑖 ,

alternating: for any 1 ≤ 𝑖 < 𝑛, polA(𝑠𝑖) ≠ polA(𝑠𝑖+1),
negative: if 𝑛 ≥ 1, then polA(𝑠1) = −,

legal: for all 1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 ∈ min(A) or 𝑠𝑖 has a pointer.

We write Plays(A) the set of plays on A.

Recall the arena A from Figure 2.1. Then the pointing string presented in

Figure 2.9 is actually a play on A.

Given a play 𝑠 and 𝑘 ≤ |𝑠|, we say that 𝑠[1 : 𝑘] is a positive prefix
(respectively a negative prefix), noted

𝑠[1 : 𝑘] ⊑+ 𝑠 (respectively 𝑠[1 : 𝑘] ⊑− 𝑠),

if polA(𝑠𝑘) = + (respectively polA(𝑠𝑘) = −). We extend this definition to

the empty play by stating that 𝜀 is a positive prefix of any play 𝑠. More

generally, a play 𝑠 on an arena A is positive if it is empty or if its last move

is positive, i. e. polA(𝑠|𝑠|) = +. We write Plays+(A) for the set of positive

plays on A.

Definition 2.8 – Well-opened play

A play 𝑠 ∈ Plays(A) is well-opened if and only if it has exactly one

move minimal in A.

We write Plays•(A) for the set of well-opened plays on A.

Combining the two notations, we write Plays+• (A) for the set of positive,

well-opened plays on A.

Going back to Figure 5 again, the execution “5 + 3 = 8” corresponds to

the (positive, well-opened) play 𝑠 ∈ Plays+• (nat⇒ nat⇒ nat) presented

in Figure 2.10, where we use indices for q1 and q2 to distinguish them
1
.



28 2 Introduction to Hyland-Ong Games

(𝛼 𝛼) 𝛼 𝛼

q−

q+q+

q−

Figure 2.7: Arena (o⇒ o) ⇒ o⇒ o.

(𝛼 𝛼) 𝛼 𝛼
q−

q+

q−

q+

q−

q+

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

Figure 2.11: A play 𝑠 in J𝑀KHO.

We are now able to write plays corresponding to the evaluation of

simply-typed lambda-terms. Consider for example the term:

𝑀 = 𝜆 𝑓 𝛼→𝛼 .𝜆𝑥𝛼 . 𝑓 ( 𝑓 𝑥) of type 𝐴 = (𝛼→ 𝛼) → 𝛼→ 𝛼.

We interpret 𝐴 as an arena in Figure 2.7. Then Figure 2.11 shows a

play 𝑠 ∈ J𝑀KHO, where J𝑀KHO is the interpretation (which is yet to be

defined) of 𝑀 as a strategy 𝜎 ⊆ Plays+((o ⇒ o) ⇒ o ⇒ o). We shall

develop this interpretation in the following section; for now we focus on

understanding 𝑠. The diagram presented in Figure 2.11 is to be read in the

following way: moves are sequentially ordered from top to bottom, and as

for arenas each move is placed under its corresponding type component,

with dashed lines for the justification pointers (matching immediate

causality). To help the unfamiliar reader, we wrote the corresponding 𝑠𝑖 ’s,

horizontally aligned, to the right of the diagram. Figure 2.11 corresponds

to the following execution:

1. First, Opponent asks for something of type 𝛼 – knowing 𝑀 is of

type (𝛼→ 𝛼) → 𝛼→ 𝛼. This corresponds to 𝑠1 = q−.

2. The variable in head position at this step of the computation is 𝑓 of

type 𝛼→ 𝛼, so Player reacts with 𝑠2 = q+ (the initial move of the

subpart of the arena coming from 𝛼→ 𝛼).

3. Opponent then wants to evaluate the argument of 𝑓 (expecting a

subterm of type 𝛼).

4. Player reacts with another copy of the move corresponding to the

variable 𝑓 (of type 𝛼→ 𝛼).

5. Opponent asks for the argument of this second 𝑓 .

6. Player responds with the move corresponding to 𝑥 of type 𝛼.

Intuitively, negative moves correspond to 𝜆-abstractions / evaluating the

argument of an application, and positive moves correspond to variable

occurrences. The pointers indicate both the link between a variable and

the 𝜆-abstraction it came from, and the link between an evaluation of an

argument and the function waiting for this argument.

2.2.2 Views

We saw several examples of plays in the previous subsection. Some, like

the play (from Figure 2.9):

𝑠 = a− c+ a− b+

feature repetition and duplication of moves: 𝑠1 and 𝑠3 both correspond

to the move a−. In HO games, both players are allowed to evaluate again

part of the program they already evaluated; here for instance Opponent

starts the evaluation with a−, Player reacts with c+, and then Opponent

decides to start the evaluation again by playing a− a second time.

This means that Opponent is allowed to “open several threads” corre-

sponding to “several program phrases”. However, when interpreting

terms of the simply-typed 𝜆-calculus, we do not want Player to be able to

react differently to moves that are duplications of the same Opponent

move: simply-typed terms have no mutable references and thus no way



2.2 Plays 29

Remark: By legality of plays, we have:

▶ if 𝑠 ≠ 𝜀, 𝑠1 is initial;

▶ if 1 ≤ 𝑖 ≤ |𝑠| is odd, 𝑠𝑖 is negative.

of storing the information “this is the 𝑛-th time I’m being evaluated”.

This corresponds to the key notion of innocence: an innocent strategy only

uses the information from the “current program phrase” to decide their

next move. This “current program phrase” is captured by the P-view.

Definition 2.9 – P-view

For any arena A, we set a partial function ⌜−⌝ : Plays(A)⇀ Plays(A)
with ⌜𝑠⌝ defined inductively on 𝑠 by:

⌜ 𝑠 a⌝ = a if a ∈ min(A),
⌜ 𝑠 a− b+⌝ = ⌜ 𝑠 a−⌝ b+ if the pointer of b is in ⌜𝑠 a−⌝,

⌜ 𝑠 a+ 𝑠′ b−⌝ = ⌜ 𝑠 a+⌝ b− if b points to a,

undefined otherwise. In the last two cases, b keeps its pointer in

the resulting play.

If defined, ⌜𝑠⌝ is called the P-view of 𝑠.

By induction, the P-view of a play 𝑠 is always a play itself if it exists:

all moves remaining in ⌜𝑠⌝ are either minimal (by the first case of the

definition) or justified (by the last two cases of the definition). Whenever

constructing the P-view would involve “jumping over a pointer” and

forgetting it, ⌜𝑠⌝ is undefined. For instance:

⌜a−⌝ = a−,

⌜a− c+⌝ = ⌜a−⌝ c+ = a− c+,

⌜a− c+ a−⌝ = a−,

⌜a− c+ a− b+⌝ undefined,

where the last P-view is undefined since ⌜ a− − c+ a− ⌝ only keeps

𝑠3 = a− and the pointer of 𝑠4 = b+ is 𝑠1 = a−. We say that such a play is

non-P-visible.

Definition 2.10 – P-Visibility

Consider an arena A. A play 𝑠 ∈ Plays(A) is P-visible if and only if

for all prefixes 𝑡 ⊑ 𝑠, the P-view ⌜ 𝑡⌝ is defined.

Constructing a P-view (if it exists) is idempotent: for any 𝑠 ∈ Plays(A),

⌜𝑠⌝ = ⌜⌜𝑠⌝⌝ .

For any 𝑠 ∈ Plays(A), we say 𝑠 is a P-view if ⌜𝑠⌝ = 𝑠 – remark that by

construction, a P-view is always P-visible. The P-views of A are exactly

the plays 𝑠 ∈ Plays(A) such that:

▶ for any odd 1 < 𝑖 ≤ |𝑠|, 𝑠𝑖 points to 𝑠𝑖−1.



30 2 Introduction to Hyland-Ong Games

q q1 5
q2 3 8

Figure 2.10: “5 + 3 = 8” – as a play

Remark: Implicit in the last clause is that

𝑠ab and 𝑠ab′ also have the same pointers.

2.3 Strategies

If plays are particular executions of a program, then a program as a

whole is represented by a strategy, a set of plays corresponding to every

possible execution of that program.

2.3.1 Definition

This set of plays must follow some conditions: in a deterministic setting,

Player should always react in the same way to a given play, for instance.

Consider the “addition” program: Figure 2.10 shows a possible play in

the strategy corresponding to this program. But Opponent might want to

compute other sums than just “5 + 3” – our strategy should also include,

amongst (many) others, the following plays:

q q1 5
q2 4 9 , q q1 1

q2 100 101.

What about duplications? Opponent is also allowed to duplicate some

moves, or to stop the computation at any point. Thus our strategy will

also include plays such as:

q q1 5
q2 , q q1 5

q2 3 8 4 9.

In the general case, all we ask of strategies is that they be deterministic
and closed under taking prefixes.

Definition 2.11 – Strategy

A strategy 𝜎 : A on an arena A is a set 𝜎 ⊆ Plays+(A), satisfying:

non-empty: 𝜀 ∈ 𝜎 ,
prefix-closed: ∀ 𝑠 ∈ 𝜎, if 𝑡 ⊑+ 𝑠, then 𝑡 ∈ 𝜎 ,
deterministic: ∀ 𝑠 ∈ 𝜎, if 𝑠ab, 𝑠ab′ ∈ 𝜎, then 𝑠ab = 𝑠ab′ .

We say that a strategy 𝜎 : A is P-visible if all plays 𝑠 ∈ 𝜎 are P-visible.

2.3.2 Innocence

Innocence captures the fact that some strategies only react to the “current

program phrase” and not the whole history of moves. In other words,

the behavior of Player entirely depends on the current P-view.



2.3 Strategies 31

Reminder: The P-views forest of an in-

nocent strategy 𝜎 is:

⌜⌜𝜎⌝⌝ = {⌜𝑠⌝ | 𝑠 ∈ 𝜎} .

[17]: Danos, Herbelin, and Regnier (1996),

‘Game semantics and abstract machines’

Remark: This result only holds for arenas

with one atomic type.

Definition 2.12 – Innocence

A strategy 𝜎 : A is innocent if it is P-visible and satisfies:

for all 𝑠ab, 𝑡 ∈ 𝜎, if 𝑡a ∈ Plays(A) and ⌜𝑠a⌝ = ⌜𝑡a⌝, then 𝑡ab ∈ 𝜎,

where ⌜𝑠ab⌝ = ⌜𝑡ab⌝ (informally, b points “as in 𝑠ab” in 𝑡ab).

An innocent strategy 𝜎 : A is determined by its P-view forest:

⌜⌜𝜎⌝⌝ = {⌜𝑠⌝ | 𝑠 ∈ 𝜎} .

Hence, we actually have two characterizations of innocent strategies:

the “fat” innocent strategy is the set of plays of the strategy 𝜎, and the

“meagre” innocent strategy is just the set of P-views ⌜⌜𝜎⌝⌝.

Since P-views are well-opened, we might also characterize any innocent

strategy 𝜎 : A by the subset of its well-opened plays:

𝜎• = 𝜎 ∩ Plays•(A) .

2.3.3 Other properties of strategies: totality and finiteness

We might want our strategy to react to every possible action of Opponent

– that would be a total strategy; or we might allow it to diverge sometimes

– giving us a partial strategy.

Definition 2.13 – Total strategy

Consider a strategy 𝜎 : A. We say 𝜎 is total if for all 𝑠 ∈ 𝜎, for

all a− ∈ A such that 𝑠a ∈ Plays(A), there exists b+ ∈ A such that

𝑠ab ∈ 𝜎. Otherwise, we say that 𝜎 is partial.

Finally, innocent strategies are “infinite” in the sense that given an

innocent strategy 𝜎 and a play 𝑠 ∈ 𝜎, any play of the form 𝑠𝑛 = 𝑠 . . . 𝑠

with 𝑛 copies of 𝑠 also belongs in 𝜎 by innocence – so 𝜎 admits an infinite

number of plays. However, since innocent strategies are characterized by

their P-views, we can distinguish between strategies having a finite set of

P-views, and strategies having an infinite set of P-views.

Definition 2.14 – Finite innocent strategy

Consider an innocent strategy 𝜎 : A. We say 𝜎 is finite if its P-view

forest ⌜⌜𝜎⌝⌝ is finite. Otherwise, we say that 𝜎 is infinite.

Total finite innocent strategies are already well-known in the litterature.

For example, on arenas interpreting simple types with a single atomic

type 𝛼, total finite innocent strategies exactly correspond to 𝛽-normal

𝜂-long simply-typed 𝜆-terms [17, Theorem 5].



32 2 Introduction to Hyland-Ong Games

q−
𝐴

T+ F+

q−
𝐵

0
+

1
+

q−
𝐶

⌣
+

�
+

Figure 2.12: Arenas 𝐴 := bool, 𝐵 := bit
and 𝐶 := mood.

2.4 Composition

As a denotational model, HO games include a notion of composition: how

do two programs interact with each other?

Given strategies 𝜎 : A⇒ B and 𝜏 : B⇒ C, we wish to somehow define

a strategy 𝜏 ⊙HO 𝜎 : A ⇒ C. Hence, we must construct a set of plays

corresponding to possible executions of the program “𝜏 ⊙HO 𝜎”.

Intuitively, the composition works in two steps:

▶ First, we choose two plays 𝑠 ∈ 𝜎 and 𝑡 ∈ 𝜏 such that 𝑠 and 𝑡 “agree

on the moves played in B”, following an interaction.

▶ Then, the interaction of these plays induces a play on A ⇒ C,

keeping only the moves from the outer arena components and

adding pointers and sequential order “following those of 𝑠 and 𝑡”.

We say we hide moves occurring in the shared arena component B.

The strategy 𝜏⊙HO 𝜎 is the set of all the possible compositions of plays.

More formally, we start by defining interactions.

Definition 2.15 – Interaction

Consider arenas A, B and C, and a pointing string 𝑢 on |A|+|B|+|C|.
We note 𝑢 ↾ A, B the subsequence of 𝑢 of the moves played in A and

B, seen as a pointing string on A⇒ B, and preserving pointers –

and likewise for 𝑢 ↾ B,C and 𝑢 ↾ A,C.

Then 𝑢 is an interaction, noted 𝑢 ∈ I(A, B,C), if:

▶ 𝑢 ↾ A, B ∈ Plays(A⇒ B),
▶ 𝑢 ↾ B,C ∈ Plays(B⇒ C),
▶ 𝑢 ↾ A,C is alternating.

Remark that this definition ensures that for any 𝑢 ∈ I(A, B,C), we have

𝑢 ↾ A,C ∈ Plays(A⇒ C). Consider for example the (very simple) arenas

in Figure 2.12. Then the pointing string

𝑢 := q𝐶 q𝐵 q𝐴 T 1 ⌣

is an interaction – notice how there is no indication of polarities – because

its restrictions are all plays in the corresponding arenas:

𝑢 ↾ 𝐴, 𝐵 := q−
𝐵 q+

𝐴 T− 1
+ ∈ Plays(𝐴⇒ 𝐵),

𝑢 ↾ 𝐵, 𝐶 := q−
𝐶 q+

𝐵 1
− ⌣

+ ∈ Plays(𝐵⇒ 𝐶),

𝑢 ↾ 𝐴, 𝐶 := q−
𝐶 q+

𝐴 T− ⌣
+ ∈ Plays(𝐴⇒ 𝐶).

Already we see some kind of compositional behavior: 𝑢 ↾ 𝐴, 𝐶 is the

result of hiding the moves occuring in 𝐵 when we “compose” the two

plays 𝑢 ↾ 𝐴, 𝐵 and 𝑢 ↾ 𝐵, 𝐶.



2.5 HO and HOInn as categories 33

[27]: Hyland and Ong (2000), ‘On Full

Abstraction for PCF: I, II, and III’

[26]: Harmer (2006), Innocent game seman-
tics

Again, we direct the reader to [27] or [26]

for detailed statements.

We extend the definition of interaction to strategies:

Definition 2.16 – Interaction of strategies

Consider arenas A, B and C, with 𝜎 : A⇒ B and 𝜏 : B⇒ C.

We define the interaction of 𝜎 and 𝜏 as:

𝜏||𝜎 def

= {𝑢 ∈ I(A, B,C) | 𝑢 ↾ A, B ∈ 𝜎 and 𝑢 ↾ B,C ∈ 𝜏} .

The composition is then obtained by hiding the moves occuring in the

shared arena component.

Definition 2.17 – Composition of strategies

Consider arenas A, B and C, with 𝜎 : A⇒ B and 𝜏 : B⇒ C.

We define the composition of 𝜎 and 𝜏 as:

𝜏 ⊙HO 𝜎
def

= {𝑢 ↾ A,C | 𝑢 ∈ 𝜏||𝜎} .

Now, obviously we want the composition of two strategies to also be a

strategy (see [27, Proposition 5.1] or [26, Proposition 2.5.3]).

Proposition 2.18 – Composition is well defined

Consider arenas A, B and C, with 𝜎 : A⇒ B and 𝜏 : B⇒ C.

Then 𝜏 ⊙HO 𝜎 is a strategy on A⇒ C.

Moreover, the composition of two innocent strategies is itself an innocent

strategy (see [27, Proposition 5.3] or [26, Proposition 2.6.3]).

Proposition 2.19 – Composition preserves innocence

Consider arenas A, B and C, with innocent strategies 𝜎 : A⇒ B and

𝜏 : B⇒ C.

Then 𝜏 ⊙HO 𝜎 is an innocent strategy on A⇒ C.

2.5 HO and HOInn as categories

Since composition behaves nicely both for strategies in general and for

innocent strategies, it is natural to consider the categorical structure of

arenas and strategies. We do not aim to give a detailed review on this

subject here; we only state some results so as to better understand how

the categorical structure of PCG – the model we focus on in this work –

relates to HO and HOInn
.

Theorem 2.20 – HO is a category

There is a category of strategies HO with arenas as objects and

strategies as morphisms.



34 2 Introduction to Hyland-Ong Games

Theorem 2.21 – HOInn is a category

There is a category of innocent strategies HOInn
with arenas as objects

and innocent strategies as morphisms.

Identity morphisms are called copycat strategies – they “copy” the

behavior of Opponent, hence their name.

Notation: We write Aℓ ⇒ A𝓇 for A⇒ A
to distinguish between the two copies of

the arena A.

Definition 2.22 – Copycat strategy

Consider an arena A.

We define ccHO
A : Aℓ ⇒ A𝓇 the copycat strategy on A with:

for any 𝑠 ∈ Plays(Aℓ ⇒ A𝓇), 𝑠 ∈ ccHO
A iff

1. ∀𝑡 ⊑+ 𝑠, 𝑡 ↾ Aℓ = 𝑡 ↾ A𝓇,

2. if 𝑠−
𝑖

and 𝑠+
𝑖+1

minimal in A, then 𝑠+
𝑖+1

points to 𝑠−
𝑖

,

Cartesian structure. Both HO and HOInn
can be equiped with a cartesian

structure, thanks to the product of arenas (Definition 2.4).

The projection 𝜋HO
A : A ⊗ B⇒ A is the copycat-like strategy where Player

duplicates every Opponent move played in one copy of A to the same

move in the other copy of A (note that Opponent cannot change the arena

component, so all moves stays in the two copies of A and no move is

played in B). The projection 𝜋HO
B is defined in the same way.

Closed structure. Finally, recall the remark made about product and

arrow constructions: it is immediate to check that for any arenas A, B and

C, there is an isomorphism:

ΛHO
: (A ⊗ B) ⇒ C � A⇒ B⇒ C;

the only difference between the two construction being tags of moves.

Applying ΛHO
to plays in strategies gives us the currying isomorphism:

ΛHO
: HO(A ⊗ B,C) � HO(A, B⇒ C) ,

which in turn gives us the evaluation morphism:

evHO
A,B

def

=
(
ΛHO)−1

(
ccHO

A⇒B
)
∈ HO((A⇒ B) ⊗ A, B) .

These morphisms verify all the equations for a cartesian closed category.

Moreover, ΛHO
preserves innocence.

Theorem 2.23 – HO and HOInn are CCC’s

HO and HOInn
are cartesian closed categories.



2.6 Links with the resource calculus 35

((o⇒ o) ⇒ (o ⇒ o) ⇒ o) ⇒ o

q−

q+

q−

q+

q−

q+

q−

q+

((o⇒ o) ⇒ (o ⇒ o) ⇒ o) ⇒ o

q−

q+

q−

q+

q−

q+

q−

q+

Figure 2.13: Two homotopic plays.

[40]: Tsukada and Ong (2016), ‘Plays as

Resource Terms via Non-idempotent In-

tersection Types’

[33]: Melliès (2006), ‘Asynchronous

games 2: The true concurrency of inno-

cence’

2.6 Links with the resource calculus

As mentionned in the introduction, the links between HO games and

resource plays have already been investigated, for instance in [40].

These links rely on Melliès’ homotopy relation, introduced in [33]. We

will define this homotopy relation more formally in the next chapter.

Intuitively, it equates plays which only differ by Opponent’s scheduling,

as the two plays of Figure 2.13.

Theorem 2.24 – HO and the resource calculus [40]

There is a bĳection between simply typed, 𝛽-normal,𝜂-long resource

terms, and HO plays up to homotopy.

Example: Consider the (simply typed, 𝛽-normal, 𝜂-long) resource term:

⊢ 𝜆 𝑓 . 𝑓 [𝜆𝑥.𝑥,𝜆𝑥.𝑥] [𝜆𝑦. 𝑓 [] []] : ((𝛼→ 𝛼) → (𝛼→ 𝛼) → 𝛼) → 𝛼

Both plays of Figure 2.13 correspond to that resource term. In the first

play, the first argument of the first call to 𝑓 is evaluated twice, and then the

second one is evaluated once; and none of the arguments to the second

call to 𝑓 is evaluated. The second play features the same moves, only in a

different order.





An introduction to Pointer
Concurrent Games



38

[4]: Blondeau-Patissier and Clairambault

(2021), ‘Positional Injectivity for Innocent

Strategies’

In this part, we introduce our Pointer Concurrent Games model. This model
was motivated by the study of positional properties of innocent strategies in
Hyland-Ong games: is the collapse of innocent strategies into the relation model
injective? This question led us to design Pointer Concurrent Games.

In Chapter 3, we introduce the question of positional injectivity and we define
configurations and augmentations, our main mathematical objects. We show
how this games model relates to traditional Hyland-Ong games.

In Chapter 4, we present a first result obtained thanks to this games model:
positional injectivity for certain total augmentations in PCG, corresponding
to a result of positional injectivity for total innocent strategies in HO.
This chapter is more technical and is not needed to follow other parts.

Most of these results were presented in the article [4].



Reminder: ⟨|𝑥|,≤𝑥⟩ is a finite forest if

it is a finite partially ordered set such

that ⟨|𝑥|,_𝑥⟩ is a forest, with _𝑥 the

immediate causality relation defined by:

∀𝑎, 𝑏 ∈ |𝑥|, 𝑎 _𝑥 𝑏 iff:

1. 𝑎 <𝑥 𝑏,

2. ∀𝑐 ∈ |𝑥|, if 𝑎 ≤𝑥 𝑐 ≤𝑥 𝑏,

then 𝑎 = 𝑐 or 𝑏 = 𝑐.

𝑎

𝑏

𝑐 𝑎 ↦→ q

𝑏 ↦→ T
𝑐 ↦→ q

Figure 3.2: 𝑦 ∈ Conf(bool)

𝑎

𝑏

𝑎 ↦→ q

𝑏 ↦→ T

Figure 3.3: 𝑧 ∈ Conf•(bool)

Static PCG: Configurations and
Augmentations 3

3.1 Relational Collapse . . . 39
3.2 Positional Injectivity . . . 43
3.3 Augmentations . . . . . . 45
3.4 Augmentations in PCG v.

Plays in HO . . . . . . . . . 48
3.5 Meagre Innocent Strate-

gies in PCG . . . . . . . . . 55
3.6 Fat Innocent Strategies . 60
3.7 A few words on Infinite

Strategies . . . . . . . . . . 63
3.8 Conclusion . . . . . . . . . 64

Before thoroughly defining pointer concurent games, we motivate our

games model with a study of positionality / positional injectivity of innocent

strategies. Indeed, at the core of pointer concurrent games are positions,
which are moves and pointers without the sequential information given

in a play. A desequentialized play induces a position, corresponding to

its collapse in the relational model. But how much information about

the play is preserved? Obviously, one cannot recover a play from any

position. Consider for example the arena bool and the following plays:

𝑠 = q − T−q − F and 𝑡 = q − F−q − T .

The only difference between 𝑠 and 𝑡 is the temporal order in which the

pairs q−T and q−F occur, so once we forget that temporal order, we have

no way of distinguishing them. But still, maybe positions of the plays

of an innocent strategy can inform us on the strategy itself. This is what

we investigate in this part. We start by defining positions and stating

the problem of positional injectivity for HO games; then we introduce

augmentations and we show how they relate to plays in HO games.

q−

T+ F+

Figure 3.1: Arena bool

3.1 Relational Collapse

3.1.1 Configurations

We first define configurations, the actual mathematical objects we will be

working with.

Definition 3.1 – Configuration

A configuration 𝑥 ∈ Conf(A) of arena A is 𝑥 = ⟨|𝑥|,≤𝑥 , 𝜕𝑥⟩ such

that ⟨|𝑥|,≤𝑥⟩ is a finite forest and 𝜕𝑥 is a function 𝜕𝑥 : |𝑥| → |A|
called the display map, subject to the conditions:

minimality-respecting: for any 𝑎 ∈ |𝑥|,
𝑎 is ≤𝑥-minimal iff 𝜕𝑥(𝑎) is ≤A-minimal,

causality-preserving: for all 𝑎1 , 𝑎2 ∈ |𝑥|,
if 𝑎1 _𝑥 𝑎2 then 𝜕𝑥(𝑎1)_A 𝜕𝑥(𝑎2),

We call events the elements of |𝑥|. A (simple) configuration 𝑦 is presented

in Figure 3.2: its events are |𝑦| = {𝑎, 𝑏, 𝑐}, ordered with 𝑎 <𝑦 𝑏, and

the display map 𝜕𝑦 is given alongside the forest (drawn from top to

bottom).

A configuration 𝑥 on an arena A is pointed, noted 𝑥 ∈ Conf•(A), if

it has exactly one minimal event for ≤𝑥 (written init(𝑥)). The example

configuration 𝑦 from Figure 3.2 is not pointed (because 𝑎 and 𝑐 are both

minimal for ≤𝑦), but 𝑧 from Figure 3.3 is.



40 3 Static Pointer Concurrent Games: Configurations and Augmentations

Thanks to the display map, a polarity function on 𝑥 can be deduced:

pol𝑥(𝑎) = polA(𝜕𝑥(𝑎)) .

As with HO games, we write 𝑎− (resp. 𝑎+) for 𝑎 such that pol𝑥(𝑎) = −
(resp. pol𝑥(𝑎) = +).

Any play induces a configuration via its desequentialization.

Definition 3.2 – Desequentialization

Consider an arena A and a play 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ Plays(𝐴). The

desequentialization of 𝑠 is ⟬𝑠⟭ = ⟨|⟬𝑠⟭|,≤⟬𝑠⟭ , 𝜕⟬𝑠⟭⟩ such that:

|⟬𝑠⟭| = {1, . . . , 𝑛},
𝑖 ≤⟬𝑠⟭ 𝑗 ⇔ there is a chain of pointers from 𝑠 𝑗 to 𝑠𝑖 in 𝑠,

𝜕⟬𝑠⟭(𝑖) = 𝑠𝑖 .

1

2

3

4

1, 3 ↦→ q
2 ↦→ T
4 ↦→ F

Figure 3.4: ⟬𝑠⟭ with 𝑠 = q − T q − F

1

2

3

4

1, 3 ↦→ q
2 ↦→ F
4 ↦→ T

Figure 3.5: ⟬𝑡⟭ with 𝑡 = q − F q − T

Figure 3.4 and Figure 3.5 present the desequentializations of the plays

introduced at the beginning of this chapter.

If 𝑠 ∈ Plays(A), then the definition of ⟬−⟭ ensures that ⟬𝑠⟭ ∈ Conf(A).
Moreover, since ≤⟬𝑠⟭ follows the chains of pointers, it is clear that

⟬𝑠⟭ ∈ Conf•(A) ⇔ 𝑠 is well-opened.

3.1.2 Positions

As elements of ⟬𝑠⟭ are natural numbers reminiscent of the ordering,

𝑠 can evidently be read back from ⟬𝑠⟭. However, in general, the exact

name of events is not relevant: what we are really interested in is the

display of those events in the arena, as well as their dependencies. Hence,

we consider symmetries on configurations, which preserve the order

relation and the display map; and we then quotient configurations by

those symmetries.

Definition 3.3 – Symmetry

Consider 𝑥, 𝑦 ∈ Conf(A). A symmetry 𝜑 : 𝑥 �A 𝑦 is an isomorphism

𝜑 : |𝑥| � |𝑦| preserving the order relation and the display map:

arena-preserving: ∀𝑎 ∈ |𝑥|, 𝜕𝑦(𝜑(𝑎)) = 𝜕𝑥(𝑎),
causality-respecting: ∀𝑎1 , 𝑎2 ∈ |𝑥|, 𝑎1 _𝑥 𝑎2 iff 𝜑(𝑎1)_𝑦 𝜑(𝑎2).

Consider again ⟬𝑠⟭ in Figure 3.4 and ⟬𝑡⟭ in Figure 3.5; then

𝜑 : ⟬𝑠⟭ �bool ⟬𝑡⟭ with 𝜑 = {1 ↦→ 3, 2 ↦→ 4, 3 ↦→ 1, 4 ↦→ 2} .

Definition 3.4 – Position

A position of A, written x ∈ Pos(A), is an isomorphism class of

configurations on A.



3.1 Relational Collapse 41

q q

T F

Figure 3.6: ⦗𝑠⦘ = ⦗𝑡⦘

Reminder: 𝜎• = 𝜎 ∩ Plays•(A), with

Plays•(A) the well-opened plays on A.

Remark: We focus on well-opened plays,

i. e. plays with only one initial moves,

because those plays are the ones corre-

sponding to points in Rel.

[19]: Ehrhard (2012), ‘The Scott model of

linear logic is the extensional collapse of

its relational model’

Reminder: M𝑓 (𝐸) is the set of finite mul-

tisets on 𝐸.

[9]: Boudes (2009), ‘Thick Subtrees,

Games and Experiments’

a

b c

dF : F′ : 1

2

3 4

𝑓 =

{
a ↦→ 1 , b ↦→ 2 ,

c ↦→ 2 , d ↦→ 4

}
Figure 3.7: A forest morphism 𝑓 : F→ F′

A position x is pointed, written x ∈ Pos•(A), if any of its representatives

is. If 𝑥 ∈ Conf(A), we write 𝑥 ∈ Pos(𝐴) for the corresponding position.

Reciprocally, if x ∈ Pos(𝐴), we fix x ∈ Conf(A) a representative.

For any play 𝑠 ∈ Plays•(A), its position ⦗𝑠⦘ ∈ Pos(A) is the isomorphism

class of ⟬𝑠⟭. The position of a play captures exactly the moves that have

been played, along with their justification pointers; it is a snapshot of

every interaction that occured between Opponent and Player at a given

point, but without the order in which those interactions occurred. To

represent positions graphically, one can draw forests of moves, where

the nodes are the arena image of events (instead of their names as with

configurations). For example, Figure 3.6 shows the position reached by

both 𝑠 = q − T q − F and 𝑡 = q − F q − T (notice that the minimal nodes

are incomparable).

For any strategy 𝜎 : A, we define its positions ⦗|𝜎|⦘ as the set of positions

reached by well-opened plays, i.e.

⦗|𝜎|⦘ = {⦗𝑠⦘ | 𝑠 ∈ 𝜎•} ⊆ Pos(A) .

3.1.3 Relational Model

Positions of plays correspond to their collapse in the relational model
[19], a static semantics where types are sets and programs are relations.

More precisely, the relational model of the simply-typed 𝜆-calculus is a

cartesian closed category Rel!, with

objects: sets,
morphisms from 𝐸 to 𝐹: relations 𝑅 ⊆ M𝑓 (𝐸) × 𝐹.

Consider simple types generated from the base type 𝛼 and the arrow→.

We interpret them as:

J𝛼KRel! = {★} ,
J𝐴→ 𝐵KRel! = M𝑓 (J𝐴KRel!) × J𝐵KRel! ,

where {★} is a singleton set. For example, the following relation

𝑅 = {([★],★), ([★,★],★)}

is a subset of J𝛼→ 𝛼KRel! (where multisets are noted with [ ] brackets).

Where does this relate to positions? First, we need to define thick subtrees

(and subforests), a notion introduced by Boudes in [9]. Thick subtrees are

rooted subtrees of a tree where some branches can be duplicated.

Definition 3.5 – Tree morphism

Consider two trees 𝑇 and 𝑇′. A tree morphism 𝑓 : 𝑇 → 𝑇′ is a

function from the nodes of 𝑇 to the nodes of 𝑇′ which preserves

the root of the tree and such that if 𝑎 _𝑇 𝑏, then 𝑓 (𝑎)_𝑇′ 𝑓 (𝑏).

This definition can be extended to forests: forest morphisms preserve the

roots of the forest as well as the immediate order, as in Figure 3.7.



42 3 Static Pointer Concurrent Games: Configurations and Augmentations

[9]: Boudes (2009), ‘Thick Subtrees,

Games and Experiments’

q−

q+

Figure 3.8: Arena J𝛼→ 𝛼KInn

q

q

q

q q

Figure 3.9: 𝑅 as a thick subtree

[9]: Boudes (2009), ‘Thick Subtrees,

Games and Experiments’

[33]: Melliès (2006), ‘Asynchronous

games 2: The true concurrency of inno-

cence’

[13]: Castellan, Clairambault, Paquet, and

Winskel (2018), ‘The concurrent game

semantics of Probabilistic PCF’

[16]: Clairambault and Visme (2020),

‘Full abstraction for the quantum lambda-

calculus’

Definition 3.6 – Thick subtree

Consider a tree 𝑇. A thick subtree of 𝑇 is ⟨𝑇′, 𝑓 ⟩ with 𝑇′ a tree and

𝑓 : 𝑇′→ 𝑇 a tree morphism.

This definition allows duplications of branches of the original tree, but

ensures that no move can be copied without its predecessors.

Again, the definition can be generalized to forests – e.g. in Figure 3.7,

⟨F′, 𝑓 ⟩ is a thick subforest of F. For the sake of simplicity, we shall use

“thick subtrees” for both thick subtrees and thick subforests.

Boudes [9, Proposition 2] showed that points of the web in relational

semantics match thick subtrees (up to isomorphism) of arenas.

Consider a well-opened arena A, then ⟨|A|,_A⟩ is a tree. It is clear that

configurations and positions of A match Boudes’ thick subtrees: they

represent partial explorations of A, where moves can be duplicated and

must be justified by their ancestors. Moreover, consider two arenas A and

B with B well-opened. There is a bĳection:

Pos(A⇒ B) � M𝑓 (Pos(A)) × Pos(B)

which matches exactly the definition of morphisms in Rel!.

For any simple type 𝐴, considering its interpretation as an arena J𝐴KInn,

there is a bĳection

R𝐴 : Pos(J𝐴KInn) � J𝐴KRel! .

Recall for example the relation:

𝑅 = {([★],★), ([★,★],★)} ⊆ J𝛼→ 𝛼KRel! .

It is easy to see it as a thick subtree of J𝛼→ 𝛼KInn as in Figure 3.9, where

the elements in a multiset in the left-hand side of a pair are Player moves,

and the elements in the right-hand side of a pair are Opponent moves.

Actually, this extends to a functor R𝐴(⦗| − |⦘) : Inn→ Rel! which preserves

the interpretation: for any simply-typed 𝜆-term 𝑀 : 𝐴,

R𝐴(⦗|J𝑀KInn|⦘) = J𝑀KRel! .

This relational collapse of innocent strategies is well-known. The inclusion

⊆ is easy; the difficulty in proving ⊇ is that game-semantic interaction

is temporal: positions arising relationally might, in principle, fail to

appear game-semantically because reproducing them yields a deadlock.

For innocent strategies this does not happen: this was proved for HO
polarized games [9, Theorem 7], asynchronous games [33, Proposition 4],

probabilistic thin concurrent games [13, Lemma 3.12] or even quantum

games [16, Theorem 5.7].



3.2 Positional Injectivity 43

[33]: Melliès (2006), ‘Asynchronous

games 2: The true concurrency of inno-

cence’

3.2 Positional Injectivity

3.2.1 Positionality

Before focusing on positional injectivity, we take a look at the stronger

property of positionality. A strategy is positional if its behavior only

depends of the current position, not the current play.

Definition 3.7 – Positionality

Consider 𝜎 : A a strategy on A. We set the condition:

positional: ∀𝑠ab, 𝑡 ∈ 𝜎, 𝑡a′ ∈ Plays(A),
⦗𝑠a⦘ = ⦗𝑡a′⦘⇒ ∃𝑡a′b ∈ 𝜎, ⦗𝑠ab⦘ = ⦗𝑡a′b⦘.

This is a rather strong requirement, which has also already been studied

in the litterature. In Melliès’ asynchronous games [33] for example, events

carry explicit copy indices that help distinguish duplications of the same

moves, so innocent strategies are positional [33, Theorem 2].

But what about innocent strategies for HO games? It is quite immediate to

find counter-examples to positionality. Consider for example the term:

𝑀 = 𝜆 𝑓 𝛼→𝛼→𝛼 . 𝜆 𝑥𝛼 . 𝜆 𝑦𝛼 . 𝑓 ( 𝑓 𝑥 𝑥) ( 𝑓 𝑦 𝑦)

whose interpretation J𝑀KInn is the innocent strategy with four maximal

P-views given in Figure 3.10.

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼
q−

q+

q−

q+

q−

q+

(a) The play 𝑠ab corresponding to the evaluation:

𝜆 𝑓 . 𝜆𝑥. 𝜆𝑦. 𝑓 ( 𝑓 𝑥 𝑥) ( 𝑓 𝑦 𝑦) .

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼
q−

q+

q−

q+

q−

q+

(b) The play 𝑠a′b corresponding to the evaluation:

𝜆 𝑓 . 𝜆𝑥. 𝜆𝑦. 𝑓 ( 𝑓 𝑥 𝑥) ( 𝑓 𝑦 𝑦) .

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼
q−

q+

q−

q+

q−

q+

(c) The play 𝑡ac corresponding to the evaluation:

𝜆 𝑓 . 𝜆𝑥. 𝜆𝑦. 𝑓 ( 𝑓 𝑥 𝑥) ( 𝑓 𝑦 𝑦) .

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼
q−

q+

q−

q+

q−

q+

(d) The play 𝑡a′c corresponding to the evaluation:

𝜆 𝑓 . 𝜆𝑥. 𝜆𝑦. 𝑓 ( 𝑓 𝑥 𝑥) ( 𝑓 𝑦 𝑦) .

Figure 3.10: The four P-views of the meagre interpretation of 𝑀.



44 3 Static Pointer Concurrent Games: Configurations and Augmentations

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼
q−

q+

q−

q+

q−

Figure 3.11: The position ⦗𝑠𝑎′⦘ = ⦗𝑡𝑎⦘ .

Reminder: ⦗|𝜎|⦘ is the set of positions

reached by well-opened plays of 𝜎.

[40]: Tsukada and Ong (2016), ‘Plays as

Resource Terms via Non-idempotent In-

tersection Types’

[30]: Kierstead (1980), ‘A Semantics for

Kleene’s j-expressions’

Then in particular both prefixes 𝑠a′ (Subfigure 3.10b) and 𝑡a (Subfig-

ure 3.10c) reach the same position (Figure 3.11), but by determinism 𝑡a
cannot be extended with b into a play of J𝑀KInn.

Hence, positionality fails in general for innocent strategies.

3.2.2 Positional Injectivity

We now turn ourselves to the weaker condition of positional injectivity:

can an innocent strategy be uniquely identified by its positions? In other

words, is the relational collapse ⦗| − |⦘ injective?

Definition 3.8 – Positional Injectivity

A set of strategies S is positionally injective if for any 𝜎, 𝜏 ∈ S,

⦗|𝜎|⦘ = ⦗|𝜏|⦘⇒ 𝜎 = 𝜏 .

So, our main question is:

Question 4: are innocent strategies positionally injective?

Tsukada and Ong [40] already studied the relational collapse of innocent

strategies, but their interpretation in Rel! is parametrized by a set 𝑋 for

the base type 𝛼. In [40], 𝑋 is required to be countably infinite: this way

one allocates one tag for each pair of chronologically contiguous O/P

moves, encoding the causal / axiom links. In contrast, here we wish to

interpret 𝛼 with a singleton set {q}, lest we lose the correspondence

between points of the web and positions.

Unlike in [40], we cannot reconstruct an innocent strategy from the

positions of its P-views only. Consider the infamous “Kierstead terms”

𝐾𝑥 = 𝜆 𝑓 (𝛼→𝛼)→𝛼 . 𝑓 (𝜆𝑥𝛼 . 𝑓 (𝜆𝑦𝛼 .𝑥))

𝐾𝑦 = 𝜆 𝑓 (𝛼→𝛼)→𝛼 . 𝑓 (𝜆𝑥𝛼 . 𝑓 (𝜆𝑦𝛼 .𝑦))

(which seem to first appear in [30, Example 3.6]). They only differ by the

very last variable. The strategies J𝐾𝑥KInn and J𝐾𝑦KInn are innocent, and

characterized by the following maximal P-views:

((𝛼 𝛼) 𝛼) 𝛼
q−

q+
q−

q+
q−

q+

𝑠𝑥 ∈ J𝐾𝑥KInn

((𝛼 𝛼) 𝛼) 𝛼
q−

q+
q−

q+
q−

q+

𝑠𝑦 ∈ J𝐾𝑦KInn.

Notice they only differ by the last move. However, this difference dis-

appears once we forget the temporal order: both plays clearly reach the

same position (i. e. a tree with two un-ordered branches).



3.3 Augmentations 45

((𝛼 𝛼) 𝛼) 𝛼
q−

q+
q−

q+
q−

q+
q−

q+

Figure 3.12: 𝑠′𝑥 ∈ J𝐾𝑥KInn.

((𝛼 𝛼) 𝛼) 𝛼
q−

q+
q−

q+
q−

q+
q−

q+

Figure 3.13: 𝑠′𝑦 ∈ J𝐾𝑦KInn.

Reminder: P-views are plays where Op-

ponent moves always point to the previ-

ous move (except for the initial move) –

see Definition 2.9 in Chapter 2.

Hence, P-views are not enough to positionally distinguish J𝐾𝑥KInn and

J𝐾𝑦KInn. Does this mean both strategies have the same positions?

In each play, let us duplicate the Opponent move which the deepest

q+ points to – so, the third move of 𝑠𝑥 and the fifth move of 𝑠𝑦 . Since

both strategies are innocent, they react by duplicating the following

Player move: the fourth move for 𝑠𝑥 , and the last one for 𝑠𝑦 . We obtain

the plays 𝑠′𝑥 and 𝑠′𝑦 presented in Figure 3.12 and Figure 3.13. It is clear

that those two plays do not reach the same position – for a start, the

root of ⟬𝑠′𝑥⟭ has degree 3 while the root of ⟬𝑠′𝑦⟭ has degree 2. But

more importantly, ⦗𝑠′𝑥⦘ will never be reached by a play of J𝐾𝑦KInn – and

conversely, ⦗𝑠′𝑦⦘ ∉ ⦗|J𝐾𝑥KInn|⦘.

By replicating Opponent moves, we are able to exhibit positions distin-

guishing the two strategies: the static behaviour of an innocent strategy

under replication somehow informs us on temporality.

Most of Chapter 4 will be devoted to turning this idea into a proof.

However, we have only been able to prove the result for total finite
innocent strategies; actually, we know that positional injectivity fails in

the case of infinite partial innocent strategies.

Before moving on to the proof, we introduce the main protagonists of

pointer concurrent games: augmentations.

3.3 Augmentations

In order to identify strategies from their positions, we need to look at

plays where Opponent duplicates moves. But such plays also contains the

order in which Opponent performs the duplications, which is actually

not relevant for our purposes since innocent strategies react in the same

way to each duplication, no matter the order. Instead, we only want to

look at the causal behavior of Player: we are interested in Player’s point of

view, and they don’t know the number or order of duplications. Thus, we

introduce augmentations, a causal version of plays and strategies inspired

from concurrent games.

Intuitively, augmentations are trees of P-views; this connection with HO
games is detailed in Section 3.4.

3.3.1 Definitions

Augmentations are configurations augmented with the causal order of

events from Player.

Definition 3.9 – Augmentation

An augmentation on a negative arena A is 𝑞 = ⟨|𝑞|,≤⟬𝑞⟭ ,≤𝑞 , 𝜕𝑞⟩
such that ⟬𝑞⟭ = ⟨|𝑞|,≤⟬𝑞⟭ , 𝜕𝑞⟩ ∈ Conf(A) and ⟨|𝑞|,≤𝑞⟩ is a forest



46 3 Static Pointer Concurrent Games: Configurations and Augmentations

Remark: We could relax some of these

conditions and study for example non

negative augmentations, or non +-

covered ones, or even∞-augmentations

with infinitely many events. All these

extensions are interesting and some of

them will be discussed later, but for now

on we focus on negative +-covered finite
augmentations

((𝛼 𝛼) 𝛼) 𝛼

1

2

3

4

5

6

7

8

Figure 3.14: An augmentation 𝑞.

satisfying:

rule-abiding: if 𝑎 ≤⟬𝑞⟭ 𝑏, then 𝑎 ≤𝑞 𝑏,

courteous: if 𝑎 _𝑞 𝑏 and pol(𝑎) = + or pol(𝑏) = −,

then 𝑎 _⟬𝑞⟭ 𝑏,

deterministic: if 𝑎 _𝑞 𝑏
+

and 𝑎 _𝑞 𝑐
+
, then 𝑏 = 𝑐,

negative: if 𝑎 is minimal for ≤𝑞 , then pol(𝑎) = −,

+-covered: if 𝑎 is maximal for ≤𝑞 , then pol(𝑎) = +,

where pol is the polarity function deduced through the display

map 𝜕𝑞 . We write 𝑞 ∈ Aug(A), and we say that ⟬𝑞⟭ ∈ Conf(A) is the

desequentialization of 𝑞 or its underlying configuration.

Remark that by courtesy and rule-abiding, 𝑎 ∈ |𝑞|minimal for≤𝑞 implies

𝑎 minimal for ≤⟬𝑞⟭. Since 𝜕𝑞 preserves minimality, this implies 𝜕𝑞(𝑎)
minimal in A.

Consider Figure 3.14. It shows an augmentation 𝑞 whose underlying

configuration is ⟬𝑠′𝑦⟭, where 𝑠′𝑦 is the play presented in Figure 3.13. The

causal order _𝑞 is noted with arrows, the static order _⟬𝑞⟭ with dashed

lines (read from top to bottom), and the arena image is given by the

position of each event under its corresponding type component. Unlike

plays, augmentations are not sequential: the vertical order here does not

inform us on _𝑞 , and some events may be placed above or under others

only for readability’s sake. Following the condition courteous, the last two

opponent moves of 𝑠′𝑦 (namely 5 and 7) are incomparable in 𝑞: both are

immediate successors of 4 for _𝑞 (and _⟬𝑞⟭).

By forestiality of ⟬𝑞⟭, for any 𝑎 ∈ |𝑞| non minimal for ≤⟬𝑞⟭, there is a

unique 𝑏 ∈ |𝑞| such that 𝑏 _⟬𝑞⟭ 𝑎. We say 𝑏 is the justifier of 𝑎, written

𝑏 = just(𝑎). Likewise, if 𝑎 is non minimal for ≤𝑞 , then by rule-abiding

there is a unique 𝑐 _𝑞 𝑎. We say 𝑐 is the predecessor of 𝑎, written

𝑐 = pred(𝑎). Since arenas are alternating, we have

pol(𝑎) ≠ pol(𝑏) and pol(𝑎) ≠ pol(𝑐) .

The predecessor and the justifier of 𝑎 can be different (e.g. pred(4) = 3

and just(4) = 1 in Figure 3.14), but they must coincide when pol(𝑎) = −
by courtesy. This corresponds to the construction of the P-view of a play,

where we jump directly from an Opponent move to the Player move

which justifies it – which is why augmentations are really trees of P-views,

as we shall see in the next section.

3.3.2 Isogmentations

As with configurations, we care about the arena image and the order

relations, but not so much about the identity of events. Hence, we define

(iso)morphisms of augmentations.

Definition 3.10 – Augmentation (iso)morphism

Consider 𝑞, 𝑝 ∈ Aug(A). An augmentation morphism 𝜑 : 𝑞 → 𝑝 is



3.3 Augmentations 47

((𝛼 𝛼) 𝛼) 𝛼
q−

q+

q−

q+

q−

q+

q−

q+

Figure 3.15: The isogmentation q = 𝑞.

a morphism 𝜑 : |𝑞| → |𝑝|with the properties:

arena-preserving: 𝜕𝑝 ◦ 𝜑 = 𝜕𝑞 ,
causality-preserving: if 𝑎 _𝑞 𝑏, then 𝜑(𝑎)_𝑝 𝜑(𝑏),

configuration-preserving: if 𝑎 _⟬𝑞⟭ 𝑏, then 𝜑(𝑎)_⟬𝑝⟭ 𝜑(𝑏).

An augmentation isomorphism, noted 𝜑 : 𝑞 � 𝑝, is an invertible

morphism.

Remark that this definition ensures that the roots of an augmentation are

preserved by morphisms.

Definition 3.11 – Isogmentation

An isogmentation of A, written q ∈ Isog(A), is an isomorphism

class of augmentations on A.

We write 𝑞 ∈ Isog(A) for the isomorphism class of 𝑞 ∈ Aug(A), and

we fix q ∈ Aug(A) a representative of q ∈ Isog(A) (note the change of

fonts). Remark that in particular, an augmentation isomorphism is a

configuration isomorphism – hence isogmentations are compatible with

positions. Isogmentations will be represented as in Figure 3.15, where

we write directly the arena image of events instead of their identity.

Lemma 3.12 – Representatives and isomorphism classes

Consider 𝑞 ∈ Aug(A) and q ∈ Isog(A). Then,

(𝑞) � 𝑞 and (q) = q .

Proof. By definition.

3.3.3 Additional Conditions on Augmentations

Before linking augmentations with P-views and plays, we define several

additional conditions.

Definition 3.13 – Pointed, −-linear and total augmentations

Consider an augmentation 𝑞 ∈ Aug(A). We set the conditions:

pointed: ≤𝑞 has only one minimal event,

−-linear: for any 𝑎− , 𝑏− ∈ |𝑞|,
if 𝑎, 𝑏 ∈ min≤𝑞 (𝑞) or pred(𝑎) = pred(𝑏),
then 𝑎 = 𝑏 or 𝜕𝑞(𝑎) ≠ 𝜕𝑞(𝑏).

total: for any 𝑎+ ∈ |𝑞|, if 𝜕𝑞(𝑎)_A 𝑏
′
,

there exists 𝑏 ∈ |𝑞| s.t. 𝜕𝑞(𝑏) = 𝑏′ and 𝑎 _𝑞 𝑏.

If 𝑞 is pointed, we write init(𝑞) for its unique minimal event, and

we write Aug•(A) the set of pointed augmentations on A.

Reminder: for any 𝑎 ∈ |𝑞| non-minimal

for≤𝑞 , pred(𝑎) is the predecessor of 𝑎, i. e.
the only 𝑎′ ∈ |𝑞| such that 𝑎′ _𝑞 𝑎.

The totality condition only seems to constrain Opponent – whenever a

move is available to Opponent, they must play it. However, Player must



48 3 Static Pointer Concurrent Games: Configurations and Augmentations

((𝛼 𝛼) 𝛼) 𝛼

1

2

3

4

5

6

7

8

Figure 3.14: An augmentation 𝑞.

react to any Opponent move since augmentations are +-covered. Hence,

the totality condition ensures that both Opponent and Player keep playing

until they reach maximal events.

For example, the augmentation from Figure 3.14 is:

▶ pointed (the only initial event is 1),

▶ total (2 and 4 both have successors with the right arena image),

▶ not −-linear (because of 5 and 7).

These three conditions are stable by isomorphism, so it makes sense to

define pointed, −-linear and total isogmentations as isogmentations for

which any representative is respectively pointed, −-linear or total.

Moreover, they only constrain minimal events and links from positive

events to negative ones; so −-linearity and totality can actually be defined

as properties of the underlying configuration.

Definition 3.14 – −-linear and total configurations

Consider a configuration 𝑥 ∈ Conf(A). We set the conditions:

−-linear: for any 𝑎− , 𝑏− ∈ |𝑥|,
if 𝑎, 𝑏 ∈ min(𝑥) or just(𝑎) = just(𝑏),
then 𝑎 = 𝑏 or 𝜕𝑥(𝑎) ≠ 𝜕𝑥(𝑏).

total: for any 𝑎+ ∈ |𝑥|, if 𝜕𝑥(𝑎)_A b′,
there exists 𝑏 ∈ |𝑥| s.t. 𝜕𝑥(𝑏) = b′ and 𝑎 _𝑥 𝑏.

Lemma 3.15

Consider an augmentation 𝑞 ∈ Aug(A). Then:

▶ 𝑞 ∈ Aug•(A) if ⟬𝑞⟭ ∈ Conf•(A),
▶ if A is negative, 𝑞 ∈ Aug•(A) if and only if ⟬𝑞⟭ ∈ Conf•(A),
▶ 𝑞 is −-linear if and only if ⟬𝑞⟭ is −-linear,

▶ 𝑞 is total if and only if ⟬𝑞⟭ is total.

Proof. Immediate by courtesy and definitions:

Pointedness. We have min≤𝑞 (𝑞) ⊆ min≤⟬𝑞⟭(𝑞). It A is negative, the

inclusion is actually an equality by courtesy.

−-linearity. For any 𝑎− ∈ |𝑞|, pred(𝑎) = just(𝑎) by courtesy.

Totality. For any 𝑎+ , 𝑏 ∈ |𝑞|, we know that 𝑎+ _𝑞 𝑏 if and only if

𝑎+ _⟬𝑞⟭ 𝑏 by courtesy.

Since these properties are stable by configuration isomorphisms, we can

even consider −-linear or total positions – i. e. positions for which any

representative is respectively −-linear or total.

3.4 Augmentations in PCG v. Plays in HO

We introduced augmentations as “trees of P-views”. Indeed, recall that P-

views are plays in which negative moves always point to their predecessor



3.4 Augmentations in PCG v. Plays in HO 49

[33]: Melliès (2006), ‘Asynchronous

games 2: The true concurrency of inno-

cence’

Reminder: The legality condition of plays

requires that each non initial move is

justified by a pointer to an earlier move.

Remark: ∼𝐻 is symmetric by definition.

Notation: We write VisPlays+(A) for the

set of 𝑃-visible positive plays on A.

(save from the initial move). This is similar to the courtesy condition

of augmentations, which implies that in an augmentation 𝑞, for any

negative event 𝑎− ∈ |𝑞|, just(𝑎) = pred(𝑎). Hence, a P-view already is an

augmentation, where the causal order is given by the sequential order

and the static order by pointers.

But what about plays that may not be P-views? Augmentations intuitively

represent “the tree – or forest – of all the P-views of the prefixes of a visible

play”. In other words, augmentations are visible plays, but quotiented

by the order in which Opponent chooses to move from one program

thread to another. This quotient is formalized with Melliès’ homotopy

equivalence [33].

3.4.1 Homotopy relation

Definition 3.16 – Melliès’ homotopy relation

Consider two visible plays 𝑠 and 𝑠′ on an arena A. Then 𝑠 ∼𝐻 𝑠′ iff

𝑠 = 𝑡 a−
1

b+
1

a−
2

b+
2
𝑡′ and 𝑠′ = 𝑡 a−

2
b+

2
a−

1
b+

1
𝑡′

with the same pointers.

Remark that since 𝑠 and 𝑠′ are both legal, a2 does not point to b1 (and

conversely a1 does not point to b2).

The example plays in Plays(bool) from the beginning of this chapter,

𝑠 = q − T−q − F and 𝑡 = q − F−q − T ,

are such that 𝑠 ∼𝐻 𝑡.

Definition 3.17 – Melliès’ homotopy equivalence

We define ∼𝐸 the reflexive transitive closure of ∼𝐻 .

Since plays are defined on negative arenas, let us consider a fixed negative

arena A. We want to prove that augmentations – or rather, isogmentations

– on A are isomorphic to 𝑃-visible positive plays quotiented by ∼𝐸:

Claim 1: There is a bĳection 𝜒 : VisPlays+(A)/∼𝐸 � Isog(A).

In order to prove this claim, we first define each side of the bĳection, and

then show they are inverses.

3.4.2 From plays to isogmentations

We start by defining the construction from VisPlays+(A)/∼𝐸 to Isog(A).

Given a play, we construct an augmentation with the causal order

following the construction of a P-view.



50 3 Static Pointer Concurrent Games: Configurations and Augmentations

((𝛼 𝛼) 𝛼) 𝛼
q−

q+
q−

q+
q−

q+
q−

q+

Figure 3.13: 𝑠′𝑦 ∈ J𝐾𝑦KInn.

((𝛼 𝛼) 𝛼) 𝛼

1

2

3

4

5

6

7

8

Figure 3.14: An augmentation 𝑞.

Definition 3.18 – Augmentation from play

Consider 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ VisPlays+(A). We construct 𝑞 = aug(𝑠) as:

|𝑞| = {1, . . . , 𝑛} ,
𝜕𝑞(𝑖) = 𝑠𝑖 ,

𝑖 _⟬𝑞⟭ 𝑗 iff 𝑠 𝑗 points to 𝑠𝑖 ,

𝑖− _𝑞 𝑗
+

iff 𝑗 = 𝑖 + 1 ,

𝑖+ _𝑞 𝑗
−

iff 𝑠 𝑗 points to 𝑠𝑖 .

Recall the play 𝑠′𝑦 from Figure 3.13; then aug(𝑠′𝑦) is the augmentation 𝑞

from Figure 3.14.

It is clear – checking the conditions one by one – that aug(−) always

constructs an augmentation.

Lemma 3.19 – aug(𝑠) is an augmentation

Consider 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ VisPlays+(A). Then aug(𝑠) ∈ Aug(A).

Proof. We write 𝑞 = aug(𝑠).
First, we check that ⟬𝑞⟭ = ⟨|𝑞|,≤⟬𝑞⟭ , 𝜕𝑞⟩ is a configuration.

Finite forest. Since 𝑠 is finite, so is |𝑞|. It is clear from definition that

⟨|𝑞|,≤⟬𝑞⟭⟩ is a finite forest.

Minimality-respect. Clear from definition and legality of 𝑠.

Reminder: see Definition 3.1.

Minimality-respecting:

𝑎 ∈ min

≤𝑥
(|𝑥|) ⇔ 𝜕𝑥(𝑎) ∈ min

≤A
(|A|) .

Causality-preserving:

if 𝑎 _𝑥 𝑏 then 𝜕𝑥(𝑎)_A 𝜕𝑥(𝑏) .

Causality-preservation. Consider 𝑖 , 𝑗 ∈ |𝑞| such that 𝑖 _⟬𝑞⟭ 𝑗. Then

by definition 𝑠 𝑗 points to 𝑠𝑖 in 𝑠. By rigidity of plays, 𝜕𝑞(𝑖)_A 𝜕𝑞(𝑗).
Hence, ⟬𝑞⟭ ∈ Conf(A). We now check 𝑞 is an augmentation.

Forestiality. By definition of the prefix order, it is clear that ⟨|𝑞|,≤𝑞⟩
is a forest.

Rule-abidingness. Consider 𝑖 , 𝑗 ∈ |𝑞| such that 𝑖 ≤⟬𝑞⟭ 𝑗. By definition,

𝑠 𝑗 points to 𝑠𝑖 . If pol(𝑖) = −, then 𝑗 = 𝑖 + 1 since 𝑠 is visible. In both

cases, 𝑖 _𝑞 𝑗.

Courtesy. Consider 𝑖 _𝑞 𝑗 such that pol(𝑖) = + or pol(𝑗) = −. By

definition of _𝑞 , we have 𝑠 𝑗) points to 𝑠 𝑗 , so 𝑖 _⟬𝑞⟭ 𝑗.

Determinism. Consider 𝑖− _𝑞 𝑗 and 𝑖− _𝑞 𝑗
′
, then 𝑗 = 𝑗′ = 𝑖 + 1.

Negativity. By negativity of A.

+-coveredness. Because 𝑠 ∈ Plays+(A).
Hence, 𝑞 ∈ Aug(A).

Moreover, this construction preserves homotopy, in the sense that homo-

topic plays become isomorphic augmentations.

Lemma 3.20 – Homotopic plays imply isomorphic aug.

Consider 𝑠, 𝑡 ∈ VisPlays+(A) such that 𝑠 ∼𝐸 𝑡. Then

aug(𝑠) � aug(𝑡) .



3.4 Augmentations in PCG v. Plays in HO 51

((𝛼 𝛼) 𝛼) 𝛼

1
−

2
+

3
−

4
+

5
−

6
+

7
−

8
+

Figure 3.14: An augmentation 𝑞.

Proof. By induction on 𝑠 ∼𝐸 𝑡. For the base case, if

𝑠 = 𝑢 a1 b1 a2 b2 𝑣 and 𝑡 = 𝑢 a2 b2 a1 b1 𝑣

with |𝑢| = 𝑘, we construct the isomorphism

𝜑 : aug(𝑠) � aug(𝑡)
𝑘 + 1 ↦→ 𝑘 + 3

𝑘 + 2 ↦→ 𝑘 + 4

𝑘 + 3 ↦→ 𝑘 + 1

𝑘 + 4 ↦→ 𝑘 + 2

𝑖 ↦→ 𝑖 otherwise

and one can check it is indeed an augmentation isomorphism.

Consider an equivalence class s ∈ VisPlays+(A)/∼𝐸 . Thanks to the above

lemma, we define isog(s) ∈ Isog(A) as

isog(s) = aug(𝑠) for any 𝑠 ∈ s .

We have now described one side of the isomorphism from Claim 1:

𝜒 : s ∈ VisPlays+(A)/∼𝐸 ↦→ isog(s) ∈ Isog(A) .

Before proving it is indeed a bĳection, we focus on the reverse operation.

3.4.3 From isogmentations to plays

Plays are obtained from alternating linearisations of augmentations.

Definition 3.21 – Alternating linearisation

Consider 𝑞 ∈ Aug(A). An alternating linearisation of 𝑞 is a total

order on the events of 𝑞, noted t = t1 . . . t𝑛 with {t𝑖 | 1 ≤ 𝑖 ≤ 𝑛} = |𝑞|,
such that:

polarity-alternating: ∀𝑖 < 𝑛, pol(t𝑖) ≠ pol(t𝑖+1) .
causality-respecting: ∀𝑖 < 𝑛, t𝑖 ≤𝑞 t𝑖+1 .

We write Alt(𝑞) for the set of alternating linearisations of 𝑞.

For instance, the augmentation 𝑞 from Figure 3.14 admits two alternating

linearisations:

Alt(𝑞) = {1 2 3 4 5 6 7 8 , 1 2 3 4 7 8 5 6} .

By determinism of plays, alternating linearisations preserve the immedi-

ate order between negative and positive moves.



52 3 Static Pointer Concurrent Games: Configurations and Augmentations

𝑎−

𝑏+

𝑐−

𝑑+

𝜕𝑞(𝑎) = 𝜕𝑞(𝑐) = q
𝜕𝑞(𝑏) = T
𝜕𝑞(𝑑) = F

Figure 3.16: 𝑞 ∈ Aug(bool).

Lemma 3.22 – Alternating linearisations preserve O–P pairs

Consider an augmentation 𝑞 ∈ Aug(A).
For any t ∈ Alt(𝑞), if 𝑎− _t 𝑏

+
then 𝑎− _𝑞 𝑏

+
.

Proof. Since A is negative, t starts with a negative move. Consider

the prefixes t𝑖 = t1 . . . t𝑖 ⊑ t. By induction on 𝑖, we prove that:

▶ if 𝑖 = 2𝑘 (i.e. t𝑖 ends with a positive event), all the maximal

events of t𝑖 are positive;

▶ if 𝑖 = 2𝑘 + 1 (i.e. t𝑖 ends with a negative event), all the maximal

events of t𝑖 are positive except exactly one negative event.

Since t starts with a negative move, the invariant 𝐻𝑖 is true for 𝑖 = 1.

Since t is alternating, 𝐻2𝑘 directly implies 𝐻2𝑘+1.

Finally, if 𝑖 = 2𝑘 + 1, then by 𝐻𝑖 t𝑖 has exactly one maximal negative

event. By determinism there is exactly one “available” positive move

next, i. e. a positive move that has not been used yet in t𝑖 and is an

immediate successor of an event of t𝑖 . Hence t𝑖+1 = succ(t𝑖), and

every maximal event of t𝑖+1
is positive.

These alternating linearisations can be translated to plays thanks to the

display map.

Definition 3.23 – Display map of a linearisation

Consider 𝑞 ∈ Aug(A) and t ∈ Alt(𝑞), noted t = t1 . . . t𝑛 . We define:

𝜕𝑞(t) = 𝜕𝑞(t1) . . . 𝜕𝑞(t𝑛) ∈ VisPlays+(𝐴)

where 𝜕𝑞(t𝑗) points to 𝜕𝑞(t𝑖) if and only if t𝑖 _⟬𝑞⟭ t𝑗 .

Proof. Since ≤⟬𝑞⟭ is a forestial order, 𝜕𝑞(t) is a pointing string. It

is alternating by definition, and the pointers follows _⟬𝑞⟭, which

follows _A. Legality is ensured by minimality-preservation of

⟬𝑞⟭, and positivity by +-coveredness of 𝑞. Finally, visibility is a

consequence of Lemma 3.22: considering the prefixes t𝑖 = t1 . . . t𝑖 ⊑ t,
we can inductively prove that for all 𝑖 ≤ 𝑛, ⌜𝜕𝑞(t𝑖)⌝ = 𝜕𝑞([t𝑖]𝑞).

This allows us to consider the set of plays described by an augmentation.

Definition 3.24 – Plays of an augmentation

Consider an augmentation 𝑞 ∈ Aug(A). Then we define

Plays(𝑞) = {𝜕𝑞(t) | t ∈ Alt(𝑞)} .

Consider the augmentation 𝑞 ∈ Aug(bool) in Figure 3.16. Then

Alt(𝑞) = { 𝑎 𝑏 𝑐 𝑑 , 𝑐 𝑑 𝑎 𝑏 } ,



3.4 Augmentations in PCG v. Plays in HO 53

and we obtain the plays

Plays(𝑞) = { q − T−q − F , q − F−q − T } .

This operation is stable under augmentation isomorphism.

Lemma 3.25 – Isomorphic augmentations have the same plays

Consider 𝑞, 𝑝 ∈ Aug(A). Then

𝑞 � 𝑝 ⇒ Plays(𝑞) = Plays(𝑝) .

Proof. Consider t = t1 . . . t𝑛 ∈ Alt(𝑞) and the isomorphism 𝜑 : 𝑞 � 𝑝.

Then it is clear that 𝜑(t1) . . . 𝜑(t𝑛) is an alternating linearisation of

𝑝, and that

𝜕𝑝(𝜑(t1) . . . 𝜑(t𝑛)) = 𝜕𝑞(t) ,

so 𝜕𝑞(t) ∈ Plays(𝑝), and we get Plays(𝑞) ⊆ Plays(𝑝). Since 𝜑 is an

isomorphism, we also have Plays(𝑝) ⊆ Plays(𝑞).

This allows us to consider, for any isogmentation q ∈ Isog(A), its plays

Plays(q), which are Plays(𝑞) for any 𝑞 ∈ q.

Now, we want those plays to be equivalent up to Mellies’ homotopy

relation.

Lemma 3.26 – Plays of an augmentation are homotopic

Consider 𝑞 ∈ Aug(A) and 𝑠, 𝑠′ ∈ Plays(𝑞).
Then 𝑠 ∼𝐸 𝑠′.

Proof. Consider t, t′ ∈ Alt(𝑞) such that 𝑠 = 𝜕𝑞(t) and 𝑠′ = 𝜕𝑞(t′).
Writing t = t1 . . . t𝑛 and t′ = t′

1
. . . t′𝑛 , let 𝑘 be the first index such that

t𝑘 ≠ t′
𝑘

(assuming t and t′ are different, otherwise the result is trivial).

We show the equivalence inductively.

First, remark that t𝑘 (and t′
𝑘
) must be negative by Lemma 3.22 and

determinism of 𝑞. Actually, since alternating linearisations preserve

immediate causality from negative to positive events, we must have

t = u 𝑎−
1
𝑏+

1
v 𝑎−

2
𝑏+

2
w and t′ = u 𝑎−

2
𝑏+

2
v′ 𝑎−

1
𝑏+

1
w′. But then,

𝑠 ∼𝐸 𝜕𝑞
(
u 𝑎−

2
𝑏+

2
𝑎−

1
𝑏+

1
v w

)
∼𝐸 𝑠′

by definition for the first equivalence, and induction hypothesis for

the second one.

For any isogmentation q ∈ Isog(A), we define Plays(q) ∈ VisPlays+(A)/∼𝐸
as Plays(q)/∼𝐸 . Now we have the other side of the bĳection from Claim 1:

𝜒−1

: q ∈ Isog(A) ↦→ Plays(q) ∈ VisPlays+(A)/∼𝐸 .

It remains to show that 𝜒 is indeed a bĳection, whose inverse is as

described above.



54 3 Static Pointer Concurrent Games: Configurations and Augmentations

VisPlays+(A)/∼𝐸 Isog(A)�

isog(−)

Plays(−)

Figure 3.17: Correspondence between

HO and PCG, part 1.

3.4.4 𝜒 is a bĳection

Theorem 3.27 – Isogmentations are plays up to ∼𝐸

There exists a bĳection 𝜒 : VisPlays+(A)/∼𝐸 � Isog(A).

Proof. We state that 𝜒 and its inverse are:

s ↦→ isog(s)
Plays(q) ←[ q .

First, consider s ∈ VisPlays+(A)/∼𝐸 . We want to prove that

Plays(isog(s)) = s . (3.1)

Consider 𝑠 ∈ s. Writing 𝑠 = 𝑠1 . . . 𝑠𝑛 , it is clear that 1 . . . 𝑛 is

an alternating linearisation of 𝑞 = aug(𝑠), and 𝑠 = 𝜕𝑞(1 . . . 𝑛) by

definition. Hence, 𝑠 ∈ Plays(𝑞). Since isomorphic augmentations

have the same set of plays (Lemma 3.25), we have 𝑠 ∈ Plays(isog(s)).
So we have s ⊆ Plays(isog(s)). Moreover, plays constructed from

an augmentation are homotopic (Lemma 3.26), so we also have

Plays(isog(s)) ⊆ s, which gives us Equation (3.1).

Now, for the other side, consider q ∈ Isog(A). We want:

isog(Plays(q)) = q . (3.2)

Consider 𝑞 ∈ q and 𝑠 ∈ Plays(𝑞), with t ∈ Alt(𝑞) such that 𝜕𝑞(t) = 𝑠.

Then

|𝑞| = {t1 , . . . , t𝑛} and |aug(𝑠)| = {1, . . . , 𝑛} ,

and by definitions and Lemma 3.22, we have an isomorphism

𝜑 : t𝑖 ↦→ 𝑖. Hence,

𝑞 � aug(𝑠) . (3.3)

So we have

isog(Plays(q)) = isog(Plays(q)/∼𝐸 ) (by Lemma 3.26)

= isog(Plays(𝑞)/∼𝐸 ) (by Lemma 3.25)

= aug(𝑠) (by Lemma 3.20)

= q (by (3.3))

which proves (3.2).

Hence, we have an isomorphism between isogmentations and visible

plays quotiented by Mellies’ homotopy equivalence.

This allows us to interpret innocent strategies in HO games as sets of

isogmentations in PCG (applying 𝜒 to the set of visible plays of the

strategy – innocence ensures this set is stable by homotopy). However,

sets of isogmentations in general do not translate to innocent strategies

in HO: we obtain a set of plays, but innocent strategies need additional

conditions such as prefix-closure, determinism, and so on. We now focus

on characterizing those sets of isogmentations which do translate to

innocent strategies in HO.



3.5 Meagre Innocent Strategies in PCG 55

((𝛼 𝛼) 𝛼) 𝛼

1
−

2
+

3
−

4
+

5
−

6
+

Figure 3.18: A mia 𝑞.

Reminder: For an innocent strategy 𝜎,

the set ⌜⌜𝜎⌝⌝ is the set of its P-views:

⌜⌜𝜎⌝⌝ = {⌜𝑠⌝ | 𝑠 ∈ 𝜎}.

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼
q−

q+

q−

q+

q−

q+

q−

q+

Figure 3.19: Maximal P-views of J𝑀KHO

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼

𝑎−

𝑏+

𝑐−

𝑑+

𝑒−

𝑓 +

Figure 3.20: MIA(J𝑀KHO)

3.5 Meagre Innocent Strategies in PCG

In traditional HO games, innocent strategies can be characterized both by

their P-views (the “meagre” version of the strategy) or their plays (the “fat”

innocent strategy). Likewise, in PCG, innocent strategies have a meagre

representation (a single isogmentation informing us on all the P-views)

and a fat representation (a set of isogmentations corresponding to all pos-

sible plays). Before characterizing sets of isogmentations corresponding

to innocent strategies, we focus on the meagre representation.

3.5.1 Meagre Innocent Augmentations and
Isogmentations

Innocent strategies in HO games are characterized by the fact that Player

does not change their behavior according to the number of duplications

of Opponent moves: they always react in the same way. Therefore, all the

information about the strategy is contained in its P-views, in which there

is no duplication of Opponent moves. So an innocent strategy can be

characterized by a unique augmentation without duplication of negative

events, corresponding to the tree of its maximal P-views.

Definition 3.28 – Meagre Innocent Augmentation (mia)

A meagre innocent augmentation 𝑞 ∈ MIA(A) is a −-linear aug-

mentation 𝑞 ∈ Aug(A).

Figure 3.18 features an example of a mia. Since −-linearity is stable by

isomorphism, we can also define meagre innocent isogmentations:

Definition 3.29 – Meagre Innocent Isogmentation (mii)

A meagre innocent isogmentation q ∈ MII(A) is a −-linear isog-

mentation q ∈ Isog(A).

Thanks to the previous isomorphism, any mii can be translated into a

play (up to ∼𝐸). We show that mii’s correspond exactly to “trees of the

maximal P-views of innocent (finite) strategies”.

Claim 2: There is a bĳection MII(A) � HOInn
𝑓
(A).

3.5.2 From innocent strategies to mii’s

Definition 3.30 – MIA of a strategy

Consider a finite innocent strategy 𝜎 : A in HO. We construct the

augmentation MIA(𝜎)with:

|MIA(𝜎)| = {𝑡 | 𝑡 ⊑ 𝑠 ∧ 𝑠 ∈ ⌜⌜𝜎⌝⌝ ∧ 𝑡 ≠ 𝜖},
𝑠 a ≤⟬MIA(𝜎)⟭ 𝑠 a 𝑡 b iff there is a chain of justifiers from b to a,

𝑠 ≤MIA(𝜎) 𝑡 iff 𝑠 ⊑ 𝑡 ,
𝜕MIA(𝜎)(𝑠 a) = a



56 3 Static Pointer Concurrent Games: Configurations and Augmentations

Consider for instance the term

𝑀 = 𝜆 𝑓 𝛼→𝛼→𝛼 . 𝜆𝑥𝛼 . 𝜆𝑦𝛼 . 𝑓 𝑥 𝑦

and its interpretation J𝑀KHO the innocent strategy defined by the two

maximal P-views presented in Figure 3.19. Then MIA(J𝑀KHO) is the

augmentation in Figure 3.20, with the following events:

𝑎 = q6 , 𝑏 = q6 q3 ,

𝑐 = q6 q3 q1 , 𝑑 = q6 q3 q1 q4 ,

𝑒 = q6 q3 q2 , 𝑓 = q6 q3 q2 q5 ,

indexing the arena as (q1 ⇒ q2 ⇒ q3) ⇒ q4 ⇒ q5 ⇒ q6 for clarity.

Also for the sake of clarity, the pointers are not represented in the list

above, but 𝑑 and 𝑓 are the plays from Figure 3.19, with

𝑎 ⊑ 𝑏 ⊑ 𝑐 ⊑ 𝑑 and 𝑎 ⊑ 𝑏 ⊑ 𝑒 ⊑ 𝑓 .

We check that this construction always define a mia.

Proposition 3.31 – MIA of a strategy

Consider a finite innocent strategy 𝜎 : A. Then

MIA(𝜎) = ⟨|MIA(𝜎)|,≤⟬MIA(𝜎)⟭ ,≤MIA(𝜎) , 𝜕MIA(𝜎)⟩

is an augmentation MIA(𝜎) ∈ MIA(A).
Moreover, MIA(𝜎) is total if and only if 𝜎 is total.

Proof. We write 𝑞 = MIA(𝜎).
First, we check that ⟬𝑞⟭ = ⟨|𝑞|,≤⟬𝑞⟭ , 𝜕𝑞⟩ is a configuration.

Finite forest. Since 𝜎 is finite, so is |𝑞|. It is clear from definition that

⟨|𝑞|,≤⟬𝑞⟭⟩ is a finite forest.

Minimality-respect. Clear from definition and legality of plays.

Causality-preservation. Consider 𝑠, 𝑡 ∈ |𝑞| such that 𝑠 _⟬𝑞⟭ 𝑡. Then

by definition 𝑠 = 𝑠′ a and 𝑡 = 𝑡′ a 𝑡′′ b with b pointing to a in 𝑡. By

rigidity of plays, 𝜕𝑞(𝑠)_A 𝜕𝑞(𝑡).
Hence, ⟬𝑞⟭ ∈ Conf(A). We now check 𝑞 is an augmentation.

Forestiality. By definition of the prefix order, it is clear that ⟨|𝑞|,≤𝑞⟩
is a forest.

Rule-abidingness. Consider 𝑠, 𝑡 ∈ |𝑞| such that 𝑠 ≤⟬𝑞⟭ 𝑡. By defini-

tion, 𝑠 is a prefix of 𝑡, so 𝑠 ≤𝑞 𝑡.
Courtesy. Consider 𝑠 _𝑞 𝑡 such that pol(𝑠) = + or pol(𝑡) = −. By

definition of 𝜕𝑞 and _𝑞 , we have 𝑠 = 𝑠′ a+ and 𝑡 = 𝑠 b− (plays are

alternating). But 𝑡 is a P-view, so b− points to a+ and 𝑠 _⟬𝑞⟭ 𝑡.

Determinism. Consider 𝑠− _𝑞 𝑡 and 𝑠− _𝑞 𝑡
′
. We must have

𝑡 = 𝑠 a+ and 𝑡′ = 𝑠 b+, and by determinism of 𝜎, 𝑡 = 𝑡′.

Negativity. By negativity of A.



3.5 Meagre Innocent Strategies in PCG 57

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼
q−

q+

q−

q+

q−

q+

Figure 3.21: MII(J𝑀KHO)

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼

𝑎−

𝑏+

branch(𝑏+)

𝑎−

𝑏+

𝑐−

𝑑+

branch(𝑑+)

𝑎−

𝑏+

𝑒−

𝑓 +

branch( 𝑓 +)

Figure 3.22: Branches(MIA(J𝑀KHO))

+-coveredness. Strategies are sets of positive plays, so all maximal

events of |𝑞| are positive.

Hence, 𝑞 ∈ Aug(A). Finally, we check the additional conditions.

−-linearity. Immediate for minimal events. If 𝑠+ _𝑞 𝑠 a− and

𝑠+ _𝑞 𝑠 b− with 𝜕𝑞(𝑠 a) = 𝜕𝑞(𝑠 b), then a = b and both points to the

last move of 𝑠 by courtesy, so 𝑠 a = 𝑠 b.

Hence, 𝑞 ∈ MIA(A).
Totality. Immediate by definition: the condition of totality for 𝜎
matches exactly the condition of totality for 𝑞.

Hence, 𝑞 is total iff 𝜎 is total.

This give us our first representation of strategies as isogmentations.

Definition 3.32 – MII of a strategy

Consider a finite innocent strategy 𝜎 : A. We define

MII(𝜎) = MIA(𝜎)

the isomorphism class of MIA(𝜎). Then MII(𝜎) ∈ MII(A).

Figure 3.21 features the isogmentation corresponding to our earlier

example of a mia (Figure 3.20).

We now have the first half of the isomorphism from Claim 2:

MII : 𝜎 ∈ HOInn
𝑓 (A) ↦→ MII(𝜎) ∈ MII(A) .

3.5.3 From mii’s to innocent strategies

Likewise, a mii corresponds to an innocent strategy in HO games, whose

P-views are constructed from the branches of the isogmentation.

Definition 3.33 – Branches

Consider an augmentation 𝑞 ∈ Aug(A), and an event 𝑎+ ∈ |𝑞|.
Then we define branch(𝑎) as the augmentation b with:

|b| = [𝑎]≤𝑞 the predecessors of 𝑎 for ≤𝑞 ,
𝑐 _⟬b⟭ 𝑑 iff 𝑐 _⟬𝑞⟭ 𝑑 ,

𝑐 _b 𝑑 iff 𝑐 _𝑞 𝑑 ,

𝜕b(𝑐) = 𝜕𝑞(𝑐) .

The set of branches of 𝑞 is Branches(𝑞).

Looking back at the mia from Figure 3.20, the positive events of 𝑞 define

three branches, shown in Figure 3.22.

It is easy to check that branches are augmentations (in particular, the

static order still has the correct properties thanks to rule-abidingness).



58 3 Static Pointer Concurrent Games: Configurations and Augmentations

Lemma 3.34 – Branches are augmentations

Consider an augmentation 𝑞 ∈ Aug(A). Any branch b ∈ Branches(𝑞)
is an augmentation b ∈ Aug(A).

Proof. By rule-abiding of 𝑞, we have:

∀𝑎+ ∈ |𝑞|, [𝑎]≤⟬𝑞⟭ ⊆ [𝑎]≤𝑞 ,

which ensures branch(𝑎) verifies all necessary conditions.

We say that an augmentation 𝑞 ∈ Aug(A) is a branch if 𝑞 ∈ Branches(𝑞).

Since branches are just restrictions of augmentations, they are preserved

by isomorphism.

Lemma 3.35 – Branches and isomorphisms

Consider two augmentations 𝑞, 𝑝 ∈ Aug(A)with 𝜑 : 𝑞 � 𝑝.

For any b ∈ Branches(𝑞), we have 𝜑(b) ∈ Branches(𝑝).

Now, since events in a branch b are totally ordered by ≤b, there exists

only one alternating linearisation of b.

Lemma 3.36 – A branch defines a unique play

Consider an augmentation 𝑞 ∈ Aug(A) and a branch b ∈ Branches(𝑞).
Then Plays(b) is a singleton, and we write

Plays(b) = {play(b)} .

By courtesy, such a play is always a P-view.

Lemma 3.37 – Branches define P-views

Consider an augmentation 𝑞 ∈ Aug(A) and a branch b ∈ Branches(𝑞).
Then play(b) is a P-view.

Proof. Every negative move (apart from the initial one) points to

its predecessor thanks to courtesy of b.

The following lemma formalizes the intuition that branches of an aug-

mentation correspond to P-views of a play.



3.5 Meagre Innocent Strategies in PCG 59

Lemma 3.38 – P-view from a branch

Consider 𝑞 ∈ Aug(A), and 𝑠 = 𝑠1 . . . 𝑠𝑛 ∈ Plays(𝑞) corresponding to

the alternating linearisation 𝑒1 . . . 𝑒𝑛 .

Then for any 𝑠1 . . . 𝑠𝑖 ⊑+ 𝑠 with 𝑖 = 1, . . . , 𝑛,

⌜𝑠1 . . . 𝑠𝑖⌝ is defined and ⌜𝑠1 . . . 𝑠𝑖⌝ = play(branch(𝑒𝑖)) .

Proof. We prove the equality by induction on 𝑖 (which also proves

the existence).

First, remark that 𝑒−
𝑖−1

_𝑞 𝑒
+
𝑖

by Lemma 3.22.

If 𝑠𝑖−1 is initial, so is 𝑒𝑖−1, and:

⌜𝑠1 . . . 𝑠𝑖⌝ = 𝑠𝑖−1 𝑠𝑖 and |branch(𝑒𝑖)| = {𝑒𝑖−1 , 𝑒𝑖}

and the equality is clear.

Otherwise, 𝑠𝑖−1 points to some 𝑠 𝑗 by legality of 𝑠, and (if it’s defined):

⌜𝑠1 . . . 𝑠𝑖⌝ = ⌜𝑠1 . . . 𝑠 𝑗⌝ 𝑠𝑖−1 𝑠𝑖 .

By induction hypothesis, ⌜𝑠1 . . . 𝑠 𝑗⌝ is defined and:

⌜𝑠1 . . . 𝑠 𝑗⌝ = play(branch(𝑒 𝑗)) .

But since 𝑠−
𝑖−1

points to 𝑠+
𝑗
, we have 𝑒+

𝑗
_⟬𝑞⟭ 𝑒

−
𝑖−1

, and by courtesy

𝑒+
𝑗

_𝑞 𝑒
−
𝑖−1

. So, we have:

𝑒 𝑗 _𝑞 𝑒𝑖−1 _𝑞 𝑒𝑖 ,

and by rigidity just(𝑒𝑖) ∈ branch(𝑒 𝑗). It is clear that branch(𝑒𝑖) is

branch(𝑒 𝑗) “extended” with 𝑒𝑖−1 and 𝑒𝑖 , and:

play(branch(𝑒𝑖)) = play(branch(𝑒 𝑗)) 𝑠𝑖−1 𝑠𝑖 ,

which gives us the desired equality.

Now we can construct the reverse part of the isomorphism from Claim 2.

Proposition 3.39

Consider q ∈ MII(A). Then we construct an innocent strategy

HOstrat(q)whose P-views are:

{play(branch(𝑒)) | 𝑒 ∈ |q|+} ∪ {𝜀} .

Moreover, HOstrat(q) is total if and only if q is total.

Proof. All those plays are P-views by courtesy of q (Lemma 3.37).

Since 𝜀 ∈ ⌜⌜HOstrat(q)⌝⌝, the strategy is non-empty. It is prefix-closed

by Lemma 3.38. Finally, all of these P-views are compatible by −-

linearity and determinism of q. Hence, HOstrat(q) is an innocent

strategy. Moreover, both definitions of totality coincide.



60 3 Static Pointer Concurrent Games: Configurations and Augmentations

HOInn
𝑓
(A) MII(A)�

MII(−)

HOstrat(−)

Figure 3.23: Correspondence between

HO and PCG, part 2.

Remark that HOstrat(q) does not depend on the choice of representative.

3.5.4 The isomorphism

Finally we check MII and HOstrat are inverses.

Theorem 3.40

Consider a negative arena A, then there exists a bĳection

MII : HOInn
𝑓 (A) � MII(A) .

Moreover, MII preserves totality.

Proof. Consider 𝜎 : A innocent and q ∈ MII(A). We show:

HOstrat(MII(𝜎)) = 𝜎 and MII(HOstrat(q)) = q .

For the first equality, consider a non-empty play 𝑠 ∈ ⌜⌜𝜎⌝⌝. Then

𝑠 ∈ |MII(𝜎)|, and by construction it is clear that play(branch(𝑠)) = 𝑠,

so 𝑠 ∈ ⌜⌜HOstrat(MII(𝜎))⌝⌝.

Conversely, consider 𝑠 ∈ ⌜⌜HOstrat(MII(𝜎))⌝⌝ with 𝑠 ≠ 𝜀, then 𝑠 =

play(b) for some b ∈ Branches(MIA(𝜎)). By construction, 𝑠 ∈ ⌜⌜𝜎⌝⌝.

Hence ⌜⌜𝜎⌝⌝ = ⌜⌜HOstrat(MII(𝜎))⌝⌝.

Likewise, we can show that MII(HOstrat(q) = q by constructing:

𝑞 � MIA(HOstrat(𝑞)) .

Finally, both constructions preserve totality.

We now have the second part of our correspondence between HO and

PCG (Figure 3.23); there is an isomorphism between isogmentations

in PCG and (homotopy equivalence classes of positive visible) plays

in HO, and there is another isomorphism between meagre innocent

isogmentations in PCG and finite innocent strategies in HO. Can these

two isomorphisms be shown to agree, and is there a way to deduce, for

example, the isogmentations obtained from an innocent strategy 𝜎 via
isog(−) if we only know MII(𝜎)? We show in the next subsection how

these isogmentations can be constructed with the notion of expansions.

3.6 Fat Innocent Strategies in PCG

3.6.1 Expansions

Besides including meagre representations of innocent strategies, aug-

mentations can also represent their expansions, i.e. arbitrary plays (with

Opponent’s scheduling factored out).



3.6 Fat Innocent Strategies in PCG 61

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼

𝑎−

𝑏+

𝑐−

𝑑+

𝑒−

𝑓 +

Figure 3.20: 𝑝 ∈ MIA(A).

(𝛼 𝛼 𝛼) 𝛼 𝛼 𝛼

1
−

2
+

3
−

4
+

5
−

6
+

Figure 3.24: 𝑞 ∈ exp(𝑝), with:

𝜑 :


1 ↦→ 𝑎, 4 ↦→ 𝑑,

2 ↦→ 𝑏, 5 ↦→ 𝑐,

3 ↦→ 𝑐, 6 ↦→ 𝑑.

Definition 3.41 – Expansion

Consider an arena A and 𝑝 ∈ MIA(A). An expansion of 𝑝 is an

augmentation 𝑞 ∈ Aug(A) such that:

simulation: there is a (necessarily unique) morphism 𝜑 : 𝑞 → 𝑝.

We write exp(𝑝) the set of expansions of 𝑝.

The relationship between a mia 𝑝 and one of its expansions 𝑞 ∈ exp(𝑝) is
analogous to that between an arena A and a configuration 𝑥 ∈ Conf(A):
𝑞 explores a prefix of 𝑝, possibly visiting the same branch many times.

However, determinism ensures that only Opponent may cause duplications,

and +-coveredness ensures that only Opponent may refuse to explore

certain branches – if a Player move is available in 𝑝, then it must appear

in all corresponding branches of 𝑞.

Recall the mia 𝑝 from Figure 3.20. Then exp(𝑝) includes for instance the

augmentation 𝑞 from Figure 3.24, where Opponent chooses to duplicate

the event 𝑐− and refuses to explore 𝑒−.

Uniqueness of the morphism follows from−-linearity and determinism.

Lemma 3.42 – Unicity of morphism for expansions of mia’s

Consider 𝑝 ∈ MIA(A) and 𝑞 ∈ exp(𝑝).
Then there exists a unique morphism 𝜑 : 𝑞 → 𝑝.

Proof. The existence is given by the definition of 𝑞 ∈ exp(𝑝).
Assume there exist two morphisms 𝜑,𝜓 : 𝑞 → 𝑝. Consider a mini-

mal (for ≤𝑞) 𝑎 ∈ |𝑞| such that 𝜑(𝑎) ≠ 𝜓(𝑎).
If 𝑎 is minimal in 𝑞, then 𝜕𝑞(𝑎) is minimal in A. By causality-

preserving, we also have 𝜑(𝑎),𝜓(𝑎)minimal for ≤𝑝 , and by arena-

preserving we have 𝜕𝑝(𝜑(𝑎)) = 𝜕𝑝(𝜓(𝑎)), so by −-linearity of 𝑝,

𝜑(𝑎) = 𝜓(𝑎).
Therefore, 𝑎 has an predecessor 𝑏 = pred(𝑎). By hypothesis, 𝜑(𝑏) =
𝜓(𝑏), hence by causality-preservation of morphisms, we have

𝜑(𝑏)_𝑝 𝜑(𝑎) and 𝜑(𝑏)_𝑝 𝜓(𝑎).
If 𝑎 is positive, then 𝑏 must be negative, and by determinism

𝜑(𝑎) = 𝜓(𝑎), contradiction. If 𝑎 is negative, then 𝑏 must be positive.

Moreover, by arena-preservation of morphisms,

𝜕𝑝(𝜑(𝑎)) = 𝜕𝑞(𝑎) = 𝜕𝑝(𝜓(𝑎)) .

By −-linearity of 𝑝, 𝜑(𝑎) = 𝜓(𝑎), contradiction.

Moreover, remark that by definition, two isomorphic augmentations have

the same expansions. This allows us to lift the definition of expansions

to isoexpansions.



62 3 Static Pointer Concurrent Games: Configurations and Augmentations

Reminder: For any 𝑝 ∈ Aug(A), we write

𝑝 ∈ Isog(A) for the isomorphism class of

𝑝. For any q ∈ Isog(A), we set q ∈ Aug(A)
a representative of q.

Definition 3.43 – Isoexpansion

Consider q ∈ MII(A). Then we define the isoexpansions of q as:

iexp(q) = {𝑝 | 𝑝 ∈ exp(q)} .

3.6.2 Fat Innocent (Iso)expansions

In HO games, plays of an innocent strategy are determined by the

P-views of the corresponding meagre innocent strategy. Likewise, in

PCG, isogmentations in an innocent strategy are expansions of a meagre

innocent augmentation.

Definition 3.44 – Fat Innocent Expansion

Consider 𝑞 ∈ MIA(A). Then we say exp(𝑞) is the fat innocent
expansion of 𝑞, noted exp(𝑞) ∈ FIE(A).

We can obviously lift this definition to isogmentations.

Definition 3.45 – Fat Innocent Isoexpansion

Consider q ∈ MII(A). Then we say iexp(q) is the fat innocent
isoexpansion of q, noted iexp(q) ∈ FII(A).

This alternative presentation of innocent strategies is equivalent to using

only the meagre isogmentation: constructing the fii of a mii is an injective

operation.

Proposition 3.46 – Injectivity of iexp(−)

Consider two fat innocent isoexpansions f, g ∈ FII(A). Then:

f = g if and only if there exists q ∈ MII(A), f = g = iexp(q) .

Proof. If. Immediate.

Only if. Assume f = g. By definition of FII(A), there exist isogmen-

tations q, p ∈ MII(A) such that f = iexp(q) and g = iexp(p). We write

𝑞 and 𝑝 for the respective representants of q and p. By hypothe-

sis, exp(𝑞) = exp(𝑝); which means in particular that 𝑞 ∈ exp(𝑝)
and 𝑝 ∈ exp(𝑞). By unicity of morphisms for expansions of mia’s

(Lemma 3.42), we obtain 𝑞 � 𝑝.

In other words, we obtain an isomorphism iexp : MII(A) � FII(A), which

composes with the previous isomorphism for meagre innocent isogmen-

tations:

iexp ◦MII : HOInn
𝑓 (A) � FII(A) .



3.7 A few words on Infinite Strategies 63

Notation: If 𝜎 ∈ HOInn
𝑓
(A), we define:

Vis(𝜎) = 𝜎 ∩ VisPlays(A)

the set of visible plays of 𝜎, and:

isog(𝜎) = {isog(𝑠/∼𝐸 ) | 𝑠 ∈ Vis(𝜎)}.

HOInn
𝑓
(A) MII(A)

FII(A)

MII(−)

iexp(−)isog(−)

Figure 3.25: Correspondence between

HO and PCG, part 3.

Reminder: An innocent strategy is infi-
nite if its set of P-views is infinite.

3.6.3 The isomorphisms isog(−) and iexp ◦MII(−) coincide

We now have isog(−) an isomorphism between (positive visible) plays

(quotiented by homotopy) and isogmentations on the one side, and

iexp◦MII(−) an isomorphism between finite innocent strategies and some

sets of isogmentations on the other. Since innocent strategies are entirely

defined thanks to their P-views, and mii’s are “trees of P-views”, these

two notions coincide:

Proposition 3.47 – Compatibility of both isomorphisms

Consider 𝜎 ∈ HOInn
𝑓
(A). Then:

isog(𝜎) = iexp(MII(𝜎)) .

Conversly, consider 𝑝 ∈ MII(A). Then:

HOstrat(𝑝)/∼𝐸 = Plays(iexp(𝑝)) .

In particular, this ensure that the positions of an innocent strategy in HO
are the positions of its interpretation as a mia.

Proposition 3.48 – Positions in HO and PCG

Consider an innocent strategy 𝜎 : A. Then ⦗|𝜎|⦘ = ⦗|MIA(𝜎)|⦘.

3.7 A few words on Infinite Strategies

Until now we only considered finite objects, but infinite innocent strategies

can also be represented in PCG. Obviously, innocent infinite strategies

are still sets of finite plays, so our first traduction isog(−) : HO→ PCG is

actually defined from innocent strategies to isogmentations. But what

about the meagre representation? We still want a “tree of the P-views”

but now we must represent infinite sets of P-views, so we extend our

previous definitions of configurations and augmentations to infinite

objects.

Definition 3.49 –∞-configuration

An∞-configuration 𝑥 ∈ Conf∞(A), is a tuple 𝑥 = ⟨|𝑥|,≤𝑥 , 𝜕𝑥⟩ such

that ⟨|𝑥|,≤𝑥⟩ is a forest, and 𝜕𝑥 : |𝑥| → |A| is the display map with:

minimality-respecting: for any 𝑎 ∈ |𝑥|,
𝑎 is ≤𝑥-minimal iff 𝜕𝑥(𝑎) is ≤A-minimal,

causality-preserving: ∀𝑎, 𝑏 ∈ |𝑥|, if 𝑎 _𝑥 𝑏 then 𝜕𝑥(𝑎)_A 𝜕𝑥(𝑏).

If 𝑥 has only one minimal event, we say that 𝑥 is well-opened,

noted 𝑥 ∈ Conf∞• (A), and we note init(𝑥) the minimal event.

As for (finite) configurations, an∞-configuration can be seen as visiting

a prefix of the arena, with possible reopenings. A polarity function for



64 3 Static Pointer Concurrent Games: Configurations and Augmentations

𝑥 can be unambiguously deduced from the arena with, for any 𝑎 ∈ |𝑥|,
pol𝑥(𝑎) = polA(𝜕𝑥(𝑎)).
(Iso)morphisms of∞-configurations are defined just as in the finite case,

as well as∞-positions.

Definition 3.50 –∞-augmentation

An∞-augmentation 𝑞 on an arena A, noted 𝑞 ∈ Aug∞(A), is a tuple

𝑞 = ⟨|𝑞|,≤⟬𝑞⟭ ,≤𝑞 , 𝜕𝑞⟩, where ⟬𝑞⟭ = ⟨|𝑞|,≤⟬𝑞⟭ , 𝜕𝑞⟩ ∈ Conf∞(A), and

⟨|𝑞|,≤𝑞⟩ is an order satisfying:

finitary: for all 𝑎 ∈ |𝑞|, [𝑎]𝑞 = {𝑎′ ∈ |𝑞| | 𝑎′ ≤𝑞 𝑎} is finite,

forestial: for all 𝑎1 , 𝑎2 ≤𝑞 𝑎, then 𝑎1 ≤𝑞 𝑎2 or 𝑎2 ≤𝑞 𝑎1,

rule-abiding: for all 𝑎1 , 𝑎2 ∈ |𝑞|, if 𝑎1 ≤⟬𝑞⟭ 𝑎2, then 𝑎1 ≤𝑞 𝑎2,

courteous: if 𝑎 _𝑞 𝑏 and pol(𝑎) = + or pol(𝑏) = −,

then 𝑎 _⟬𝑞⟭ 𝑏,

deterministic: for all 𝑎− _𝑞 𝑏
+
1

and 𝑎− _𝑞 𝑏
+
2

, then 𝑏1 = 𝑏2,

negative: for all 𝑎 ∈ |𝑞|minimal for ≤𝑞 , we have pol(𝑎) = −,

+-covered: for all 𝑎 ∈ |𝑞|maximal for ≤𝑞 , we have pol(𝑎) = +.

We call ⟬𝑞⟭ ∈ Conf∞(A) the desequentialization of 𝑞.

As before, we can extend the definition of (iso)morphisms and isogmen-

tations. Isomorphism classes of ∞-augmentations of A will be called

∞-isogmentations, noted Isog∞(A).
Adapting the constructions from the previous section, we can extend the

meagre representation to infinite innocent strategies. Given an innocent

strategy 𝜎, it can be translated either to an infinite isogmentation q, or to

the set of all finite extensions of q.

3.8 Conclusion

We now have a model with:

▶ configurations / positions representing the “static” informations

contained in a play,

▶ augmentations / isogmentations representing “trees of P-views”,

▶ a notion of expansion matching the construction of an innocent

strategy from the set of its P-views,

along with isomorphisms between HO and PCG for innocent strategies,

preserving finiteness and totality.

The next chapter present a first result obtained thanks to this model:

innocent total finite strategies are positionaly injective.

The compositional aspect of the model will be studied in Chapter 6.



((𝛼 𝛼) 𝛼) 𝛼
q−

q+

q−

q+

q−

q+

Figure 4.1: ⦗𝑞⦘ = ⦗𝑝⦘.

Positional Injectivity, for PCG
and for HO 4

4.1 Duplicating Opp. Moves 65
4.2 Bisimulation Relations . 70
4.3 Pos. Inj. in PCG . . . . . . 81
4.4 Pos. Inj. in HO . . . . . . . 86
4.5 Conclusion . . . . . . . . . 88

We now focus on positional injectivity, first for finite total meagre innocent
isogmentations in PCG, then for finite total innocent strategies in HO.

Drawing inspiration from the proof of injectivity of the relational model

for MELL proof nets [18]

[18]: de Carvalho (2016), ‘The Relational

Model Is Injective for Multiplicative Ex-

ponential Linear Logic’

, we construct characteristic expansions in

Section 4.1 in such a way that we can track down duplications of negative

events in the positions in order to recover a “sufficient” portion of the

causal structure. We explain what we mean by sufficient in Section 4.2

with the introduction of several bisimulation relations, between events

and between augmentations. Finally, we deduce positional injectivity for

PCG in Section 4.3. Section 4.4 goes back to HO games and presents a

counter-example for positional injectivity in the case of infinite, partial
innocent strategies.

In all this chapter, A is a negative well-opened arena, unless stated
otherwise.

4.1 Duplicating Opponent Moves

4.1.1 Proof idea

We already know that given a position x ∈ Pos(A), we cannot in general

uniquely reconstruct its causal explanation. Consider for instance 𝑞 and

𝑝 the mia’s for 𝐾𝑥 and 𝐾𝑦 defined in Subsection 3.2.2:

((𝛼 𝛼) 𝛼) 𝛼

1
−

2
+

3
−

4
+

5
−

6
+

𝑞 = MIA(J𝐾𝑥KHO),

((𝛼 𝛼) 𝛼) 𝛼

1
−

2
+

3
−

4
+

5
−

6
+

𝑝 = MIA(J𝐾𝑦KHO).

Then both augmentations reach the same position (Figure 4.1): if we

forget the causal order, we cannot distinguish between the two branches

of the position anymore.

However, we already constructed two positions distinguishing between

𝐾𝑥 and 𝐾𝑦 in Subsection 3.2.2, by duplicating the Opponent move

justifying the last Player move. This triggers two different reactions from

the two augmentations: in 𝑞, 6
+

is justified by 3
−
, so Player reacts to the

duplication of 3
−

with a copy of 4
+
. However, in 𝑝, 6

+
is justified by 5

−
,

so Player reacts to the duplication of 5
−

with a copy of 6
+
.



66 4 Positional Injectivity, for PCG and for HO

Reminder: for any 𝑞 ∈ Aug(A), ⦗𝑞⦘ is the

position ⟬𝑞⟭ reached by the desequen-

tialization of 𝑞. For any 𝑝 ∈ MIA(A),

exp•(𝑝) = exp(𝑝) ∩ Aug•(A) ,
⦗|𝑝|⦘ = {⦗𝑞⦘ | 𝑞 ∈ exp•(𝑝)} .

((𝛼 𝛼) 𝛼) 𝛼
q−

q+

q− q−

q+ q+

q−
q+

Figure 4.2: x′ = ⦗𝑞′⦘.

((𝛼 𝛼) 𝛼) 𝛼
q−

q+

q−

q+

q−

q+

q−

q+

Figure 4.3: y′ = ⦗𝑝′⦘.

We obtain the following expansions:

((𝛼 𝛼) 𝛼) 𝛼

1
−

2
+

3
−

3
′−

4
+ 4

′+

5
−

6
+

𝑞′ ∈ exp(𝑞),

((𝛼 𝛼) 𝛼) 𝛼

1
−

2
+

3
−

4
+

5
−

6
+

5
′−

6
′+

𝑝′ ∈ exp(𝑝).

Then it is clear that ⦗𝑞′⦘ ≠ ⦗𝑝′⦘ (see Figures 4.2 and 4.3).

Furthermore, consider y′ = ⦗𝑝′⦘ the position represented in Figure 4.3.

The only (up to iso) expansion of a mia yielding y′ as a position is 𝑝′:
every other attempt to guess causal wiring fails, because of −-linearity

and the cardinality of duplications. But 𝑝′ is an expansion of the unique

maximal branch of (the mia representing) 𝐾𝑦 ; which means that if we are

given y′ and the information that y′ comes from a “maximal” expansion

of a mia 𝑟 (in the sense that it explores all branches at least once), then

we know 𝑟 can only be (the mia representing) 𝐾𝑦 .

This suggests a proof idea: given 𝑝1 ∈ MIA(A), we seek to construct an

expansion 𝑞1 ∈ exp(𝑝1) whose position would uniquely characterize 𝑝1,

in the sense that for any 𝑝2 ∈ MIA(A) such that ⦗|𝑝1|⦘ = ⦗|𝑝2|⦘, the fact

that ⦗𝑞1⦘ ∈ ⦗|𝑝2|⦘ implies that 𝑝1 � 𝑝2.

Such expansions will be called characteristic expansions; we give the

definition in Subsection 4.1.2. Then in Section 4.2, we define bisimulations

between augmentations, aiming to prove that

1. characteristic expansions reaching the same position are bisimilar

(Section 4.3),

2. if two MIA have bisimilar characteristic expansions, they are actu-

ally equal (up to isomorphism) (Subsection 4.2.2).

4.1.2 Characteristic Expansions

Characteristic expansions are expansions with conditions on the cardinality

of duplications of Opponent moves. Hence, we first need to define those

sets of duplicated moves.



4.1 Duplicating Opponent Moves 67

((𝛼 𝛼) 𝛼) 𝛼

1

𝑋12

3

𝑋2

4

5

6

7

8

𝑋3

Figure 4.4: Forks of an augmentation 𝑞.

Remark: In particular, Lemma 4.2 im-

plies that for any two augmentations

𝑞, 𝑝 ∈ Aug(A) such that 𝜑 : 𝑞 � 𝑝, we

have

∀𝑋 ⊆ |𝑞|, 𝑋 ∈ Fork(𝑞) ⇔ 𝜑(𝑋) ∈ Fork(𝑝).

((𝛼 𝛼) 𝛼) 𝛼

1

𝑋12

3

𝑋2

4

5

6

7

8

𝑋3

Figure 4.5: Forks of a configuration ⟬𝑞⟭.

Definition 4.1 – Fork

Consider an augmentation 𝑞 ∈ Aug(A). A fork in 𝑞 is a maximal

non-empty set 𝑋 ⊆ |𝑞| such that:

negative: for all 𝑎 ∈ 𝑋, pol(𝑎) = −,

sibling: either all 𝑎 ∈ 𝑋 are minimal for ≤𝑞 ,
or there exists 𝑏 ∈ |𝑞| s.t. for all 𝑎 ∈ 𝑋, 𝑏 _𝑞 𝑎,

identical: for all 𝑎, 𝑏 ∈ 𝑋, 𝜕𝑞(𝑎) = 𝜕𝑞(𝑏).

We write Fork(𝑞) for the set of forks in 𝑞.

For 𝑝 ∈ MIA(A) and 𝑞 ∈ exp(𝑝), the forks of 𝑞 are exactly the sets of

duplicated Opponent moves. Recall the augmentation 𝑞 from Figure 3.14

for instance; Figure 4.4 shows the three forks of 𝑞, where 5 and 7 belong

in the same fork, as copies of the same Opponent move.

Moreover, the definition of forks only depends on causal links of the form

𝑎+ _𝑞 𝑏
−

; and by courtesy, these are exactly the static causal links of the

form 𝑎+ _⟬𝑞⟭ 𝑏
−

. Hence, forks are preserved by desequentialization and

isomorphisms.

Lemma 4.2 – Forks of a configuration

Consider an augmentation 𝑞 ∈ Aug(A). For any 𝑝 ∈ Aug(A) such

that 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭, we have:

∀𝑋 ⊆ |𝑞|, 𝑋 ∈ Fork(𝑞) ⇔ 𝜑(𝑋) ∈ Fork(𝑝).

Proof. By courtesy and the fact configuration morphisms preserves

the static order and the arena image.

This allows us to consider Fork(⟬𝑞⟭), where the fact that 𝑋 ∈ Fork(⟬𝑞⟭)
can be deduced without knowing ≤𝑞 . For instance, Figure 4.5 shows the

forks of the configuration ⟬𝑞⟭, where 𝑞 is the augmentation from Figure

4.4 – remark that both sets of forks coincide.

Consider a fork 𝑋. Since augmentations are +-covered and by causality-

preserving of morphisms and determinism of augmentations, all Player

moves in 𝑞 caused by Opponent moves in 𝑋 are copies of the same Player

move in 𝑝. So, if 𝑋 has cardinality ♯𝑋 = 𝑛 and we find exactly one set 𝑌

of “equivalent” Player moves of cardinality ♯𝑌 = 𝑚 ≥ 𝑛, we may deduce

that the successors of the events of 𝑋 are in 𝑌. We will formalize what

we mean by “equivalent” in Subsection 4.2.3; for now it suffices to think

of those sets as sets of Player moves “behaving the same way” in the

position (e.g. a minimal requirement would be that all moves of such a

set have the same arena image). In Figure 4.4 for example, the fork 𝑋3

has two elements 5 and 7. The set of their successors can only be {6, 8}:
it cannot contain 4 by acyclicity of _𝑞 , and it cannot be {2, 6} or {2, 8}
because 2 does not have the same arena image as the others. Hence, in

this very simple case, we are able to deduce causal links thanks to the

cardinality of forks.

In general though, distinct Opponent moves may trigger identical Player

moves, so that the cardinality of a set 𝑌 of “similar” Player moves is the



68 4 Positional Injectivity, for PCG and for HO

Reminder: 𝑞 ∈ Aug(A) is total if for any

𝑎+ ∈ |𝑞|, if there exists 𝑏′ ∈ |A| such that

𝜕𝑞(𝑎) _A 𝑏′, then there exists 𝑏 ∈ |𝑞|
such that 𝜕𝑞(𝑏) = 𝑏′ and 𝑎 _𝑞 𝑏.

sum of the cardinalities of the predecessor forks. To allow us to identify

these predecessor sets uniquely, the trick is to construct the characteristic

expansion so that all forks have cardinality a distinct power of 2, making

it so that the predecessor forks can be inferred from the (unique) binary

decomposition of ♯𝑌. This brings us to the following definition.

Definition 4.3 – Characteristic Expansion

Consider a MIA 𝑝 ∈ Aug(A). A characteristic expansion of 𝑝 is an

augmentation 𝑞 ∈ exp(𝑝), with 𝜑 : 𝑞 → 𝑝, such that:

fork-injective: for 𝑋,𝑌 ∈ Fork(𝑞), if ♯𝑋 = ♯𝑌 then 𝑋 = 𝑌,

well-powered: for 𝑋 ∈ Fork(𝑞), there is 𝑛 ∈ ℕ such that ♯𝑋 = 2
𝑛
,

−-obsessional: for 𝑎+ ∈ |𝑞|, if 𝜑(𝑎+)_𝑝 𝑏
−
,

there is 𝑎+ _𝑞 𝑎
′
such that 𝜑(𝑎′) = 𝑏−.

The condition −-obsessional means that 𝑞 has at least one copy of every

negative element of 𝑝; since augmentations are +-covered it also copies

at least once every positive element of 𝑝. Hence, 𝑞 is characteristic in the

sense that it contains all the information given in 𝑝.

This definition is stable by isomorphism, allowing us to consider charac-
teristic iso-expansions, as in Figure 4.6.

((𝛼 𝛼) 𝛼) 𝛼

q−

q+
q−

1
q−

2

q+
1

q+
2

q−
1

. . . q−
4

q+
1

. . . q+
4 q−

1

. . . q−
8

q+
1

. . . q+
8

𝑋0

𝑋1

×4
𝑋2

×8

𝑋3

×4

×8

♯𝑋0 = 1 = 2
0

♯𝑋1 = 2 = 2
1

♯𝑋2 = 4 = 2
2

♯𝑋3 = 8 = 2
3

Figure 4.6: A characteristic (iso-)expansion q for the mia representing 𝐾𝑦 , with four forks.

We only write _⟬𝑞⟭ when it differs from _𝑞 , and use indices to indicate the number of duplications.

Given a mia 𝑝 and an augmentation 𝑞 ∈ exp(𝑝), is it possible to deduce

from the position ⦗𝑞⦘ whether or not 𝑞 is a characteristic expansion of 𝑝?

The first two conditions, fork-injective and well-powered, only constrain the

cardinality of forks, and Fork(𝑞) = Fork(⟬𝑞⟭). However, we cannot say in

general if 𝑞 is −-obsessional: if an Opponent move (available in A) does

not appear in 𝑞, is it because it never occurs in 𝑝, or because 𝑞 forgot

to copy it? Without knowing 𝑝 it is impossible to conclude in general.

However, −-obsessional expansions have the very interesting property of

preserving totality: for any 𝑝 ∈ MIA(A) and 𝑞 ∈ exp(𝑝) a characteristic

expansion of 𝑝, 𝑞 is total if and only if 𝑝 is total.



4.1 Duplicating Opponent Moves 69

1: We need well-openedness because we

only consider pointed positions in ⦗| − |⦘;

the results can be easily extended to a

general negative arena A by decompos-

ing A in a product of well-opened arenas

A1 , . . . , A𝑛 . Any total 𝑝 ∈ MIA(A) can be

decomposed as a tuple of pointed mia

𝑝𝑖 ∈ MIA(A𝑖).

Lemma 4.4 – Totality of characteristic expansions

Consider 𝑝 ∈ MIA(A) and a characteristic expansion 𝑞 ∈ exp(𝑝).
Then 𝑞 is total if and only if 𝑝 is total.

Proof. Immediate by definition.

Moreover, if we know that 𝑝 is total, then 𝑞 ∈ exp(𝑝) is −-obsessional if

and only if it is total – which means, by courtesy, that being −-obsessional

is a property of ⟬𝑞⟭ in that case. All in all, we get that for a total mia 𝑝, we

can deduce if an expansion 𝑞 ∈ exp(𝑝) is characteristic only by looking at

its position ⦗𝑞⦘.

Lemma 4.5 – Positions of characteristic expansions

Consider 𝑝 ∈ MIA(A) a total augmentation, and 𝑞 ∈ exp(𝑝).
Then 𝑞 is a characteristic expansion of 𝑝 if and only if ⦗𝑞⦘ is

fork-injective, well-powered and total.

Proof. We define fork-injectivity and well-poweredness for a

position as fork-injectivity and well-poweredness for any of its

representative. The result is trivial by courtesy and totality of 𝑝.

Consider a well-opened
1

arena A and two total mia 𝑝1 and 𝑝2 such that

⦗|𝑝1|⦘ = ⦗|𝑝2|⦘. Then for any 𝑞1 a characteristic expansion of 𝑝1, there

exists 𝑞2 ∈ exp(𝑝2) such that ⦗𝑞1⦘ = ⦗𝑞2⦘, and by the above lemma 𝑞2 is

a characteristic expansion of 𝑝2.

How different can be those two characteristic expansions 𝑞1 ∈ exp(𝑝1)
and 𝑞2 ∈ exp(𝑝2)? Since ⟬𝑞1⟭ � ⟬𝑞2⟭, a first guess would be isomorphic;

however that is not always true. Consider the following total mia 𝑝:

((𝛼 𝛼) 𝛼) (𝛼 𝛼 𝛼) 𝛼

𝑎−

𝑏+

𝑐−

𝑑−𝑒+
1

𝑓 −
1

𝑔+
1

𝑒+
2

𝑓 −
2

𝑔+
2

Figure 4.7: A mia 𝑝.

Since 𝑐− and 𝑑− trigger (copies of) the same events in 𝑝, we can construct

several non-isomorphic characteristic expansions of 𝑝 reaching the same

position. For instance, if 𝑐− and 𝑑− are duplicated respectively 2 and 4

times, we obtain 2 + 4 = 6 moves that are copies of 𝑒+
1

or of 𝑒+
2

, with no

way of recovering precisely if a copy corresponds to 𝑒+
1

or 𝑒+
2

.



70 4 Positional Injectivity, for PCG and for HO

Notation: For any morphism Γ, we write:

▶ dom(Γ) for its domain,

▶ cod(Γ) for its codomain,

i. e. Γ : dom(Γ) → cod(Γ).

So, characteristic expansions have some degree of liberty in swapping

forks around: they might have “the same branches” with different mul-

tiplicity. Hence, we need a weaker relation between 𝑞1 and 𝑞2. Thus

we define bisimulations between augmentations, seeking to construct a

relation that is both “weak enough” to allow such changes in multiplicity,

and “strong enough” to ensure that 𝑞1 ∼ 𝑞2 implies 𝑝1 � 𝑝2.

4.2 Bisimulation Relations

4.2.1 Bisimulations across an isomorphism

Let us first focus on bisimulations between augmentations reaching the

same positions. Consider 𝑞, 𝑝 ∈ Aug(A) such that 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭. Given

𝑎 ∈ |𝑞| and 𝑏 ∈ |𝑝|, we need a predicate 𝑎 ∼ 𝑏 expressing that 𝑎 and

𝑏 have “the same causal follow-up, up to the multiplicity of Opponent

duplications”.

In particular, 𝑎 and 𝑏 must have “the same pointers” – but that cannot be

strictly true since they live in different sets of events!

An idea that might first come to mind is to consider 𝑎 ∼𝜑 𝑏 parametrized

by 𝜑, asking that the pointers are equal via 𝜑. But as the bisimulation

unfolds, this requirement is too strong: as seen in the previous example,

an isomorphism 𝜑 between desequentializations is not enough to ensure

that all pointers match via 𝜑.

So our actual predicate has form 𝑎 ∼𝜑
Γ
𝑏 where Γ is a context stating a

correspondence between negative moves established in the bisimulation

game so far.

Definition 4.6 – Context

Consider 𝑞, 𝑝 ∈ Aug•(A)with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭.

A context Γ between 𝑞 and 𝑝 is a bĳection such that:

well-defined: dom(Γ) ⊆ |𝑞| and cod(Γ) ⊆ |𝑝|,
negative: pol(dom(Γ)) ⊆ {−} ,

arena-preserving: for all 𝑎 ∈ dom(Γ), 𝜕𝑞(𝑎) = 𝜕𝑝(Γ(𝑎)).

In the negative condition, we ask for inclusion rather than equality to allow

empty contexts. Remark that by arena-preservation, this is equivalent

to ask pol(cod(Γ)) ⊆ {−}. This ensures that for any context Γ between

augmentations 𝑞 and 𝑝, then Γ−1
is a context between 𝑝 and 𝑞.

We now give a first notion of bisimulation across augmentations.



4.2 Bisimulation Relations 71

Reminder: init(𝑞) is the initial event of 𝑞,

i. e. the event minimal for ≤𝑞 .

Definition 4.7 – Bisimulation (between events)

Consider 𝑞, 𝑝 ∈ Aug•(A)with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭.

For any 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝| and Γ a context, we say that a context

enables 𝑎, 𝑏, noted Γ ⊢ (𝑎, 𝑏), if:

(a) for all 𝑎′ ∈ |𝑞|, if 𝑎′ >𝑞 𝑎 then 𝑎′ ∉ dom(Γ);
(b) for all 𝑏′ ∈ |𝑝|, if 𝑏′ >𝑝 𝑏 then 𝑏′ ∉ cod(Γ).

We define a predicate:

𝑎 and 𝑏 are bisimilar via 𝜑 with the context Γ,

written 𝑎 ∼𝜑
Γ
𝑏, which holds if, firstly:

(1) 𝜕𝑞(𝑎) = 𝜕𝑝(𝑏);
(2) Γ ⊢ (𝑎, 𝑏).

If 𝑎 is positive, we additionally require:

(3) if just(𝑎) ∈ dom(Γ),
then just(𝑏) ∈ cod(Γ) and Γ(just(𝑎)) = just(𝑏);

(4) if just(𝑎) ∉ dom(Γ),
then just(𝑏) ∉ cod(Γ) and 𝜑(just(𝑎)) = just(𝑏).

Finally, the following two bisimulation conditions hold inductively:

(5) if 𝑎+ _𝑞 𝑎
′
, then there is 𝑏′ ∈ |𝑝| such that 𝑏 _𝑝 𝑏

′

and 𝑎′ ∼𝜑
Γ∪{(𝑎′ ,𝑏′)} 𝑏

′
, and symmetrically;

(6) if 𝑎− _𝑞 𝑎
′
, then there is 𝑏′ ∈ |𝑝| such that 𝑏 _𝑝 𝑏

′

and 𝑎′ ∼𝜑
Γ
𝑏′, and symmetrically.

Reminder: just(𝑎) is the (unique) 𝑎′ ∈ |𝑞|
such that 𝑎′ _⟬𝑞⟭ 𝑎.

Remark: Regarding condition (5):
Γ ∪ {(𝑎′, 𝑏′)} remains a bĳection since

Γ ⊢ (𝑎, 𝑏) implies that 𝑎′ ∉ dom(Γ) and

𝑏′ ∉ cod(Γ).

Of particular interest is the case 𝑎 ∼𝜑∅ 𝑏 over an empty context, written

simply 𝑎 ∼𝜑 𝑏. From this, we deduce a relation between augmentations.

Definition 4.8 – Bisimulation (between augmentations)

Consider 𝑞, 𝑝 ∈ Aug•(A)with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭.

We say that 𝑞 and 𝑝 are bisimilar via 𝜑, noted 𝑞 ∼𝜑 𝑝, if

init(𝑞) ∼𝜑 init(𝑝) .

Bisimulations allow us to express that two characteristic expansions

with isomorphic configurations are “the same”. Furthermore, they enjoy

equivalence properties:

Lemma 4.9 – Equivalence properties of bisimulations

Consider 𝑞, 𝑝, 𝑟 ∈ Aug•(A)with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭ and 𝜓 : ⟬𝑝⟭ � ⟬𝑟⟭.

For any events 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|, 𝑐 ∈ |𝑟| and contexts Γ,Δ, we have:

reflexivity: 𝑎 ∼id 𝑎,

symmetry: if 𝑎 ∼𝜑
Γ
𝑏 then 𝑏 ∼𝜑

−1

Γ−1
𝑎,

transitivity: if 𝑎 ∼𝜑
Γ
𝑏 and 𝑏 ∼𝜓

Δ
𝑐 with cod(Γ) = dom(Δ),

then 𝑎 ∼𝜓◦𝜑
Δ◦Γ 𝑐.



72 4 Positional Injectivity, for PCG and for HO

Proof. Immediate by induction.

Recall the proof sketch for positional injectivity at the end of Subsection

4.1.1. Given two total mia 𝑝1 , 𝑝2 ∈ Aug•(A) and two characteristic expan-

sions 𝑞1 ∈ exp•(𝑝1) and 𝑞2 ∈ exp•(𝑝2)with 𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭, we want to

prove:

1. if 𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭ then 𝑞1 ∼𝜑 𝑞2,

2. if 𝑞1 ∼𝜑 𝑞2, then 𝑝1 � 𝑝2.

We start by proving the second proposition.

4.2.2 Bisimulations between non-isomorphic
augmentations

To achieve that, we exploit compositional properties of bisimulations.

More precisely, we define bisimulations between augmentations over

non-isomorphic configurations, and we show that 𝑞𝑖 ∈ exp•(𝑝𝑖) induces

a bisimulation 𝑞𝑖 ∼ 𝑝𝑖 . We then find a way to compose

𝑝1 ∼ 𝑞1 ∼𝜑 𝑞2 ∼ 𝑝2 (4.1)

to deduce 𝑝1 ∼ 𝑝2, which will imply 𝑝1 � 𝑝2.

Obviously we cannot expect there to be an isomorphism between ⟬𝑞𝑖⟭
and ⟬𝑝𝑖⟭, as characteristic expansions have by construction many more

events. Hence we introduce a variant of Definition 4.7 – where we remove

condition (4) and ask that all pointers go through Γ:

Definition 4.10 – Bisimulation (for non-iso augmentations)

Consider 𝑞, 𝑝 ∈ Aug•(A). For any 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝| and a context Γ,

we say that 𝑎 and 𝑏 are bisimilar with the context Γ, written 𝑎 ∼Γ 𝑏,

if:

(1) 𝜕𝑞(𝑎) = 𝜕𝑝(𝑏),
(2) Γ ⊢ (𝑎, 𝑏).

If 𝑎 is positive, we additionally require:

(3) just(𝑎) ∈ dom(Γ) and Γ(just(𝑎)) = just(𝑏).
Finally, the following two bisimulation conditions hold inductively:

(4) if 𝑎+ _𝑞 𝑎
′
, then there is 𝑏′ ∈ |𝑝| such that 𝑏 _𝑝 𝑏

′

and 𝑎′ ∼Γ∪{(𝑎′ ,𝑏′)} 𝑏′, and symmetrically,

(5) if 𝑎− _𝑞 𝑎
′
, then there is 𝑏′ ∈ |𝑝| such that 𝑏 _𝑝 𝑏

′

and 𝑎′ ∼Γ 𝑏′, and symmetrically.

We say that 𝑞 and 𝑝 are bisimilar, written 𝑞 ∼ 𝑝, if:

init(𝑞) ∼{(init(𝑞),init(𝑝))} init(𝑝) .

It may seem confusing that we use the same notation for both kinds of

bisimulations. This is justified by the fact that whenever both definitions

apply, they coincide:



4.2 Bisimulation Relations 73

Reminder: 𝑞 ∈ exp(𝑝) with the mor-

phism 𝜑 is a −-obsessional expansion

if for all 𝑎+ ∈ |𝑞|, if 𝜑(𝑎) _𝑝 𝑏
′
, then

there exists 𝑏 ∈ |𝑞| such that 𝑎 _𝑞 𝑏 and

𝜑(𝑏) = 𝑏′.

Lemma 4.11 – Both bisimulations coincide

Consider 𝑞, 𝑝 ∈ Aug•(A), and 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭.

Then 𝑞 ∼𝜑 𝑝 if and only if 𝑞 ∼ 𝑝.

Proof. If. Straightforward from Definition 4.7 and Definition 4.10:

case (4) of Definition 4.7 is never used.

Only if. For 𝑎 ∈ |𝑞|, we define the negative predecessors of 𝑎 in 𝑞:

[𝑎]−𝑞 = {𝑎′ ∈ |𝑞| | 𝑎′ ≤𝑞 𝑎 and pol(𝑎′) = −} .

Given 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|, Γ ⊢ (𝑎, 𝑏), we say that Γ is complete if

[𝑎]−𝑞 ⊆ dom(Γ) and [𝑏]−𝑝 ⊆ cod(Γ) .

For all events 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝| and complete context Γ ⊢ (𝑎, 𝑏), if

𝑎 ∼𝜑
Γ
𝑏 then 𝑎 ∼Γ 𝑏. The proof is immediate by induction: the clause

(4) of Definition 4.7 is never used from the hypothesis that Γ is

complete. We apply this to the roots of 𝑞, 𝑝:

init(𝑞) ∼{(init(𝑞),init(𝑝))} init(𝑝) ,

which is exactly the definition of 𝑞 ∼ 𝑝.

Remark: We still very much need to use the ∼𝜑 bisimulation sometimes!

All isomorphisms between 𝑞 and 𝑝 associate init(𝑞) with init(𝑝) (because

both augmentations are pointed), but they can differ for other events.

Expliciting 𝜑 will be necessary for some parts of the positional injectivity

proof, since we compare all events of the augmentations and not only

the roots.

This version of bisimulation also enjoys equivalence properties:

Lemma 4.12 – Equivalence for bisimulations w/o iso

Consider 𝑞, 𝑝, 𝑟 ∈ Aug•(A).
For any events 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|, 𝑐 ∈ |𝑟| and contexts Γ,Δ, we have:

reflexivity: 𝑎 ∼id[𝑎]−𝑞
𝑎,

symmetry: if 𝑎 ∼Γ 𝑏 then 𝑏 ∼Γ−1 𝑎,

transitivity: if 𝑎 ∼Γ 𝑏 and 𝑏 ∼Δ 𝑐 with cod(Γ) = dom(Δ),
then 𝑎 ∼Δ◦Γ 𝑐.

Proof. Similar to the proof for Lemma 4.9.

Finally this bisimulation allows us to express what we want: the fact

that two augmentations are “the same, up to Opponent duplications”. In

particular, a pointed expansion 𝑞 of a pointed mia 𝑝 is bisimilar to 𝑝 if

and only if it is a −-obsessional expansion.

We first state that events of a −-obsessional expansion 𝑞 and their images

in 𝑝 are bisimilar. First, recall that for any mia 𝑝 ∈ Aug•(A) and 𝜑 : 𝑞 → 𝑝,



74 4 Positional Injectivity, for PCG and for HO

for any event 𝑎 ∈ |𝑞|, we define the negative predecessors of 𝑎 in 𝑞 as:

[𝑎]−𝑞 = {𝑎′ ∈ |𝑞| | 𝑎′ ≤𝑞 𝑎 and pol(𝑎′) = −} .

From the definition of augmentation morphisms, there is an order-

isomorphism:

Γ
𝜑
𝑎 : [𝑎]−𝑞 � [𝜑(𝑎)]−𝑝 .

Finally, we define the co-depth of 𝑎 as the maximal length 𝑘 of a causal

chain 𝑎 = 𝑎1 _𝑞 . . . _𝑞 𝑎𝑘 .

Lemma 4.13 – Bisimulation for −-obsessional expansions

Consider 𝑝 ∈ MIA•(A) and 𝑞 ∈ exp•(A) a −-obsessional expansion

with the morphism 𝜑 : 𝑞 → 𝑝.

Then, for any 𝑎 ∈ 𝑞,

𝑎 ∼
Γ
𝜑
𝑎
𝜑(𝑎) .

Proof. By induction on the co-depth of 𝑎 ∈ |𝑞|. We check that

𝑎 ∼
Γ
𝜑
𝑎
𝜑(𝑎), following Definition 4.10.

First, (1) and (2) are immediate by the definitions of 𝜑 and Γ
𝜑
𝑎 .

(3). If 𝑎 is positive, then:{
just(𝑎+) ∈ [𝑎]−𝑞 = dom(Γ𝜑𝑎 ) ,
just(𝜑(𝑎)) ∈ [𝜑(𝑎)]−𝑝 = cod(Γ𝜑𝑎 ) .

Moreover just(𝜑(𝑎)) = 𝜑(just(𝑎)) since 𝜑 preserves the static order.

(4). Assume 𝑎+ _𝑞 𝑏
−
. Then 𝜑(𝑎) _𝑝 𝜑(𝑏), and by induction

hypothesis we have:

𝑏 ∼
Γ
𝜑
𝑏
𝜑(𝑏) .

But [𝑏−]−𝑞 = [𝑎]−𝑞 ∪ {𝑏} and [𝜑(𝑏)−]−𝑝 = [𝜑(𝑎)]−𝑝 ∪ {𝜑(𝑏)}, so finally:

𝑏 ∼
Γ
𝜑
𝑎 ∪{(𝑏,𝜑(𝑏))} 𝜑(𝑏) .

The same reasoning applies for the symmetric condition. Assume

𝜑(𝑎)+ _𝑝 𝑏, then 𝜑−1(𝑏) exists by −-obsessionality of 𝑞.

(5). Same as for (4), except [𝑏+]−𝑞 = [𝑎]−𝑞 and [𝜑(𝑏)+]−𝑝 = [𝜑(𝑎)]−𝑝 .

The same reasoning applies for the symmetric condition. Assume

𝜑(𝑎)− _𝑝 𝑏, then 𝜑−1(𝑏) exists by +-coveredness of 𝑞.

We can now prove the following proposition:

Proposition 4.14 – Condition of −-obsessionality

Consider 𝑞, 𝑝 ∈ Aug•(A)with 𝑝 a mia.

Then, 𝑞 is a −-obsessional expansion of 𝑝 if and only if 𝑞 ∼ 𝑝.

Proof. If. We construct 𝜑 : 𝑞 → 𝑝 for all 𝑎 ∈ |𝑞| by induction

on ≤𝑞 . The image is provided by bisimulation, its uniqueness by



4.2 Bisimulation Relations 75

Proof Sketch for Positional Injectivity:
Consider two total mia 𝑝1 , 𝑝2 ∈ Aug•(A)
such that ⦗|𝑝1|⦘ = ⦗|𝑝2|⦘. Let 𝑞1 ∈ exp•(𝑝1)
be a characteristic expansion of 𝑝1, then

there exists 𝑞2 ∈ exp•(𝑝2) such that

𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭. Then:

(𝑖) 𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭ implies 𝑞1 ∼𝜑 𝑞2

(we still need to prove this!),
(𝑖𝑖)which implies 𝑝1 � 𝑝2

(Lemma 4.5 and Proposition 4.15).

determinism and −-linearity. Condition (4) of bisimulation ensures

−-obsessionality.

Only if. For 𝜑 : 𝑞 → 𝑝 and 𝑎 ∈ |𝑞|, we have

𝑎 ∼
Γ
𝜑
𝑎
𝜑(𝑎)

by Lemma 4.13. In particular,

init(𝑞) ∼{(init(𝑞),init(𝑝))} init(𝑝)

with Γ
𝜑
init(𝑞) = {(init(𝑞), init(𝑝))}.

Altogether, we have:

Proposition 4.15

Consider two pointed mia 𝑝1 , 𝑝2 ∈ MIA•(A) and two characteristic

expansions 𝑞1 ∈ exp•(𝑝1) and 𝑞2 ∈ exp•(𝑝2) with an isomorphism

𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭.

If 𝑞1 ∼𝜑 𝑞2, then 𝑝1 � 𝑝2.

Proof. As characteristic expansions, 𝑞1 and 𝑞2 are −-obsessional,

so by Proposition 4.14 we have 𝑞1 ∼ 𝑝1 and 𝑞2 ∼ 𝑝2. Moreover, by

Lemma 4.11, if 𝑞1 ∼𝜑 𝑞2 then 𝑞1 ∼ 𝑞2. By symmetry of ∼ (Lemma

4.12), we obtain:

𝑝1 ∼ 𝑞1 ∼ 𝑞2 ∼ 𝑝2 .

Lemma 4.12 allows us to compose bisimulations, giving us 𝑝1 ∼ 𝑝2

(and 𝑝2 ∼ 𝑝1).

Since 𝑝2 is a mia and 𝑝1 ∼ 𝑝2, then by Proposition 4.14 𝑝1 is a

−-obsessional expansion of 𝑝2, and there is a (unique) morphism

𝜑 : 𝑝1 → 𝑝2. Likewise, there exists 𝜓 : 𝑝2 → 𝑝1. But morphisms

from an expansion to a mia are unique (Lemma 3.42), so 𝜑◦𝜓 = id𝑝2

and 𝜓 ◦ 𝜑 = id𝑝1
, hence 𝑝1 � 𝑝2.

Going back again to the proof sketch for positional injectivity, we now

only need to prove that two characteristic expansions reaching the same

position are bisimilar.

4.2.3 Clones

In Section 4.1.2, we introduced characteristic expansions which, via duplica-

tions with well-chosen cardinalities, constrain the causal structure. More

precisely, if 𝑝 is a mia and 𝑞 ∈ exp(𝑝) is characteristic, one could look at a

set of duplicated Player moves in ⟬𝑞⟭ of cardinality 𝑛 and, decomposing

𝑛 =
∑
𝑖∈𝐼 2

𝑖
, one could deduce that the causal predecessors of the q+

𝑗
’s

are among the forks with cardinality 2
𝑖
for 𝑖 ∈ 𝐼. But that is not enough:

this does not tell us how to distribute the q+
𝑗
’s to the forks, and not all

the choices will work: while the q+
𝑗
’s are copies, their respective causal

follow-ups might differ. So the idea is simple: imagine that the causal

follow-ups for the q+
𝑗
’s are already reconstructed. Then we may compare



76 4 Positional Injectivity, for PCG and for HO

them using bisimulation, and replicate the same reasoning as above on

bisimulation equivalence classes.

So we are left with the task of leveraging bisimulation to define an

adequate equivalence relation on |𝑞|. This leads to the notion of clones,

our last technical tool.

Clones – definitions

We want a relation 𝑎 ≈𝜑 𝑏 that will allow 𝑎 and 𝑏 (and their follow-ups)

to change their pointers through some unspecified Γ.

Definition 4.16 – Pointers-preserving context

Consider 𝑞, 𝑝 ∈ Aug•(A)with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭ and a context Γ. We say

Γ preserves pointers if for all 𝑎 ∈ dom(Γ), 𝜑(just(𝑎)) = just(Γ(𝑎)).

Definition 4.17 – Clone

Consider 𝑞, 𝑝 ∈ Aug•(A)with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭, and 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|.
We say that 𝑎 and 𝑏 are clones through 𝜑, written 𝑎 ≈𝜑 𝑏, if there

is a pointer-preserving context Γ such that 𝑎 ∼𝜑
Γ
𝑏.

As 𝑎 ≈𝜑 𝑏 quantifies existentially over contexts, compositional properties

of clones are more challenging. Nevertheless, via a canonical form for

contexts, we show that ≈ also enjoy equivalence properties.

Context Properties

First, we prove some properties of contexts. For any event 𝑎 of an

augmentation 𝑞 ∈ Aug(A), we define ↑ 𝑎 the set of descendants of 𝑎, i.e.

↑ 𝑎 = {𝑎′ | 𝑎 ≤𝑞 𝑎′}.

Lemma 4.18 – Matching contexts

Consider 𝑞, 𝑝 ∈ Aug•(A) with 𝜑 : 𝑞 � 𝑝. Consider 𝑎 ∼𝜑
Γ
𝑏 for some

𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝| and a context Γ.

Then for any 𝑎′ ∈ ↑ 𝑎, there exists 𝑏′ ∈ ↑ 𝑏 such that 𝑎′ ∼𝜑
Γ∪Δ 𝑏′,

where

𝑎 = 𝑎0 _𝑞 . . . _𝑞 𝑎
′ = 𝑎𝑛 , 𝑏 = 𝑏0 _𝑝 . . . _𝑝 𝑏

′ = 𝑏𝑛 ,

and Δ is the context defined as

Δ = {(𝑎𝑖 , 𝑏𝑖) | 0 ≤ 𝑖 ≤ 𝑛 and pol(𝑎𝑖) = −} .

Moreover, if 𝑎 ∼𝜑
Γ′ 𝑏 for a context Γ′, we also have 𝑎′ ∼𝜑

Γ′∪Δ 𝑏
′
.

Proof. By induction of the co-depth of 𝑎′.

We can now define minimal contexts.



4.2 Bisimulation Relations 77

Definition 4.19 – Minimal context

Consider 𝑞, 𝑝 ∈ Aug•(A), 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭, 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|with 𝑎 ∼𝜑
Γ
𝑏

for some context Γ. We define Γ𝑎,𝑏 the minimal context for 𝑎 ∼𝜑
Γ
𝑏

as the restriction of Γ such that:

𝑐 ∈ dom(Γ𝑎,𝑏) ⇔
{
∃𝑎′+ ∈ ↑ 𝑎, just(𝑎′) = 𝑐 (i)
Γ(𝑐) ≠ 𝜑(𝑐) (ii)

for all 𝑐 ∈ |𝑞|, and symmetrically the mirror condition applies to

any 𝑑 ∈ |𝑝|.

We can check that this indeed defines a context.

Lemma 4.20 – Minimal contexts are contexts

Consider 𝑞, 𝑝 ∈ Aug•(A), 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭, 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|with 𝑎 ∼𝜑
Γ
𝑏

for some context Γ.

Then Γ𝑎,𝑏 is a context and 𝑎 ∼𝜑
Γ𝑎,𝑏

𝑏.

Proof. Immediate by definition. First, any restriction of Γ enables

𝑎, 𝑏. Next, Γ is only needed for 𝑎′+ ∈ ↑ 𝑎, inductively following

conditions (3) and (4) of Definition 4.7, so we only need to keep

𝑐 ∈ dom(Γ) verifying condition (𝑖). Finally, if Γ(𝑐) = 𝜑(𝑐), then we

can safely remove (𝑐, 𝜑(𝑐)) from Γ: whenever 𝑐 is needed, we use

condition (4) instead of (3).

Moreover, we say Γ𝑎,𝑏 is the minimal context because it is uniquely defined

for any bisimilar 𝑎, 𝑏.

Lemma 4.21 – Minimality and unicity of minimal contexts

Consider 𝑞, 𝑝 ∈ Aug(A) with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭. Consider 𝑎 ∈ |𝑞|,
𝑏 ∈ |𝑝| and Γ, Δ two contexts such that 𝑎 ∼𝜑

Γ
𝑏 and 𝑎 ∼𝜑

Δ
𝑏.

Then Γ𝑎,𝑏 = Δ𝑎,𝑏 . Moreover, Γ𝑎,𝑏 is the minimal (for inclusion)

context such that 𝑎 ∼𝜑
Γ𝑎,𝑏

𝑏.

Proof. First, we prove that Γ𝑎,𝑏 = Δ𝑎,𝑏 .

Consider 𝑐 ∈ dom(Γ𝑎,𝑏). Then by (𝑖) there exists 𝑎′ ∈ ↑ 𝑎 such that

just(𝑎′) = 𝑐. Since 𝑎 ∼𝜑
Γ
𝑏, there exists a matching 𝑏′ ∈ ↑ 𝑏 such

that just(𝑏) = Γ(𝑐) (Lemma 4.18). Moreover, by condition (𝑖𝑖), we

know Γ(𝑐) ≠ 𝜑(𝑐). If 𝑐 ∉ dom(Δ𝑎,𝑏), then by Lemma 4.18 and 𝑎 ∼𝜑
Δ
𝑏

we have just(𝑏′) = 𝜑(𝑐), i.e. 𝜑(𝑐) = Γ𝑎,𝑏(𝑐), contradiction. So 𝑐 ∈
dom(Δ𝑎,𝑏), and by Lemma 4.18 and 𝑎 ∼𝜑

Δ
𝑏 we have just(𝑏′) = Δ𝑎,𝑏(𝑐),

i.e. Γ𝑎,𝑏(𝑐) = Δ𝑎,𝑏(𝑐).
Symmetrically, for any 𝑐 ∈ dom(Δ𝑎,𝑏), we have 𝑐 ∈ dom(Γ𝑎,𝑏) and

Δ𝑎,𝑏(𝑐) = Γ𝑎,𝑏(𝑐). Hence, Γ𝑎,𝑏 = Δ𝑎,𝑏 .

We just proved that for any context Δ such that 𝑎 ∼𝜑
Δ
𝑏, we have

Γ𝑎,𝑏 = Δ𝑎,𝑏 . Hence Γ𝑎,𝑏 ⊆ Δ, so Γ𝑎,𝑏 is minimal for inclusion.



78 4 Positional Injectivity, for PCG and for HO

This lemma allows us to write the minimal context for 𝑎, 𝑏 without men-

tioning Γ.

Clones as equivalence classes

A key notion in the proof of positional injectivity is the notion of clones,

a variation of bisimulation. Although the added constraint on contexts

makes transitivity more challenging, we can still prove a variation of

Lemma 4.9. We use the same notation as for the usual bisimulation: for

any 𝑎, 𝑏 events of an augmentation 𝑞, 𝑎 ≈ 𝑏 means 𝑎 ≈id 𝑏.

Lemma 4.22 – Transitivity of ≈

Consider 𝑞, 𝑝, 𝑟 in Aug•(A) with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭ and 𝜓 : ⟬𝑞⟭ � ⟬𝑝⟭,

and 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|, 𝑐 ∈ |𝑟| such that 𝑎 ≈𝜑 𝑏 and 𝑏 ≈𝜓 𝑐.
Then we also have 𝑎 ≈𝜓◦𝜑 𝑐.

Proof. Consider Γ and Δ the minimal contexts such that 𝑎 ∼𝜑
Γ
𝑏

and 𝑏 ∼𝜓
Δ
𝑐 (unique by Lemma 4.21).

If cod(Γ) = dom(Δ), the result is immediate by Lemma 4.9: we get

𝑎 ∼𝜓◦𝜑
Δ◦Γ 𝑐 with, for any 𝑑 ∈ dom(Δ ◦ Γ) = dom(Γ),

𝜓(𝜑(just(𝑑))) = 𝜓(just(Γ(𝑑))) = just(Δ(Γ(𝑑)))

so Δ ◦ Γ preserves pointers, and 𝑎 ≈Δ◦Γ 𝑐.
Now, assume there exists 𝑑 ∈ cod(Γ) such that 𝑑 ∉ dom(Δ). Since Γ

is minimal, there exists 𝑏′ ∈ ↑ 𝑏 such that just(𝑏′) = 𝑑. By 𝑏 ∼Δ𝜓 𝑐 and

Lemma 4.18, there exists a matching 𝑐′ ∈ ↑ 𝑐 such that 𝑏′ ∼𝜓
Δ∪Δ′ 𝑐

′
,

with Δ′ mapping negative moves between 𝑏 and 𝑏′ to negative

moves between 𝑐 and 𝑐′. Since 𝑑 ∈ cod(Γ), we do not have 𝑑 ≥𝑝 𝑏, so

𝑑 ∉ dom(Δ′). Hence, just(𝑐′) = 𝜓(𝑑) and 𝜓(𝑑) ∉ cod(Δ). So we can

write

𝑏 ∼𝜓
Δ∪{(𝑑,𝜓(𝑑))} 𝑐

where Δ ∪ {(𝑑,𝜓(𝑑))} preserves pointers.

Likewise, for any 𝑑 ∈ dom(Δ) such that 𝑑 ∉ cod(Γ), we have Γ ∪
{(𝜑−1(𝑑), 𝑑)}well-defined and pointer preserving, such that

𝑎 ∼𝜑(Γ∪{(𝜑−1(𝑑),𝑑)} 𝑏 .

This allows us to define the following pointer-preserving contexts:

Γ′ = Γ ∪ {(𝜑−1(𝑑), 𝑑) | 𝑑 ∈ dom(Δ), 𝑑 ∉ cod(Γ)}
Δ′ = Δ ∪ {(𝑑,𝜓(𝑑)) | 𝑑 ∈ cod(Γ), 𝑑 ∉ dom(Δ)}.

Then 𝑎 ∼𝜑
Γ′ 𝑏 and 𝑏 ∼𝜓

Δ′ 𝑐, so by Lemma 4.9, we have 𝑎 ∼𝜓◦𝜑
Δ′◦Γ′ 𝑐.

Moreover, Δ′ ◦ Γ′ preserves pointers, so finally 𝑎 ≈𝜓◦𝜑 𝑐.

This allows us to prove equivalence properties for the clone relation.



4.2 Bisimulation Relations 79

Lemma 4.23 – Equivalence for ≈

Consider 𝑞, 𝑝, 𝑟 ∈ Aug•(A) augmentations, with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭ and

𝜓 : ⟬𝑝⟭ � ⟬𝑟⟭, and events 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|, 𝑐 ∈ |𝑟|. Then:

reflexivity: 𝑎 ≈id 𝑎,

transitivity: if 𝑎 ≈𝜑 𝑏 and 𝑏 ≈𝜓 𝑐, then 𝑎 ≈𝜓◦𝜑 𝑐,
symmetry: if 𝑎 ≈𝜑 𝑏 then 𝑏 ≈𝜑−1

𝑎.

Proof. Reflexivity. By reflexivity of ∼id
(Lemma 4.9), 𝑎 ∼id 𝑎, which

implies 𝑎 ≈id 𝑎.

Transitivity. See Lemma 4.22.

Symmetry. Immediate by symmetry of ∼𝜑
Γ

(Lemma 4.9): if Γ pre-

serves pointers, so does Γ−1
.

Clones through id in characteristic expansions will be especially inter-

esting, because then we can partition equivalence classes of ≈id
into

successors of forks.

Forks and Clone Classes Cardinalities

Lemma 4.24 – Forks generates clones

Consider 𝑝 ∈ MIA(A) and 𝑞 ∈ exp•(𝑝) a −-obsessional expansion.

Then, for all 𝑎−
1
, 𝑎−

2
∈ 𝑋 ∈ Fork(𝑞), for all 𝑎−

1
_𝑞 𝑏

+
1

and 𝑎−
2

_𝑞 𝑏
+
2

,

we have 𝑏1 ≈ 𝑏2.

Proof. If 𝑋 = {init(𝑞)}, then 𝑎1 = 𝑎2 = init(𝑞) and the result is

immediate by determinism and reflexivity.

Otherwise, assume 𝑋 ≠ {init(𝑞)} and 𝑎1 ≠ 𝑎2.

First, let us prove that 𝑏1 and 𝑏2 are bisimilar. Since 𝑞 is a −-

obsessional expansion of 𝑝, there exists a unique (by Lemma 3.42)

morphism 𝜑 : 𝑞 → 𝑝.

Recall Lemma 4.13. Writing

Γ𝑖 = Γ
𝜑
𝑏𝑖

: [𝑏𝑖]−𝑞 � [𝜑(𝑏𝑖)]−𝑝 for 𝑖 = 1, 2 ,

we have:

𝑏𝑖 ∼Γ𝑖 𝜑(𝑏𝑖) for 𝑖 = 1, 2 .

By −-linearity of 𝑝, we know that 𝜑(𝑎1) = 𝜑(𝑎2), so 𝜑(𝑏1) = 𝜑(𝑏2)
by determinism. Hence by Lemma 4.12, we have

𝑏1 ∼Γ−1

2
◦Γ1

𝑏2 .

Writing Γ = Γ−1

2
◦ Γ1, it remains to check that Γ preserves pointers.

Consider 𝑐 ∈ dom(Γ) = [𝑏1]−𝑞 . If 𝑐 = 𝑎1, then Γ1(𝑎1) = 𝜑(𝑎1) = Γ2(𝑎2)
by −-linearity of 𝑝. By courtesy and since 𝑎1 , 𝑎2 ∈ 𝑋 ∈ Fork(𝑞), both

have the same pointer 𝑑 = just(𝑎1) = just(𝑎2) = pred(𝑎1) = pred(𝑎2).
If 𝑐 ≠ 𝑎1, then 𝑐 ≤𝑞 𝑑, so 𝑐 ∈ dom(Γ)2 and Γ1(𝑐) = 𝜑(𝑐) = Γ2(𝑐),
hence Γ(𝑐) = 𝑐. In both cases, Γ preserves pointers, so 𝑏1 ≈ 𝑏2.



80 4 Positional Injectivity, for PCG and for HO

In particular, if a clone class includes a positive move, it also has all its

cousins triggered by the same fork – so clone classes may be partitioned

following forks.

Lemma 4.25 – Partition Lemma

Consider 𝑝 ∈ MIA(A) and 𝑞 ∈ exp•(𝑝) a characteristic expansion.

Consider 𝑌 a clone class of positive events in |𝑞|, with

♯𝑌 =
∑
𝑖∈𝐼

2
𝑖

for 𝐼 ⊂ ℕ finite.

Then for all 𝑖 ∈ ℕ, we have:

𝑖 ∈ 𝐼 iff ∃𝑋𝑖 ∈ Fork(𝑞) such that

{
♯𝑋𝑖 = 2

𝑖 ,

∃𝑎 ∈ 𝑋𝑖 , 𝑏 ∈ 𝑌 s.t. 𝑎 _𝑞 𝑏 .

Moreover, we can partition 𝑌 into:

𝑌 =
⊎
𝑖∈𝐼
𝑌𝑖

with for all 𝑖 ∈ 𝐼, ♯𝑌𝑖 = 2
𝑖
and for all 𝑏 ∈ 𝑌𝑖 , there is a unique 𝑎 ∈ 𝑋𝑖

such that 𝑎 _𝑞 𝑏.

Proof. For any 𝑖 ∈ ℕ, we write 𝑋𝑖 the fork of 𝑞 of cardinality 2
𝑖
, if

it exists. Consider the set:

𝐽 = { 𝑗 ∈ ℕ | 𝑋𝑗 exists, ∃𝑎 ∈ 𝑋𝑗 , 𝑏 ∈ 𝑌 s.t. 𝑎 _𝑞 𝑏} .

Any 𝑏 ∈ 𝑌 is positive, and so the unique (by determinism) successor

of some negative event 𝑎. But 𝑎 appears in some fork 𝑋 ∈ Fork(𝑞),
and by Lemma 4.24, all events of 𝑋 are predecessors of events of 𝑌.

So, for any 𝑗 ∈ 𝐽, the set of successors of events of 𝑋𝑗 is 𝑌𝑗 ∈ 𝑌, with

♯𝑌𝑗 = ♯𝑋𝑗 by determinism. Finally, we have:

𝑌 =
⋃
𝑗∈𝐽
𝑌𝑗

where the union is disjoint since 𝑞 is forest-shaped. Therefore:

♯𝑌 =
∑
𝑗∈𝐽

♯𝑌𝑗 =
∑
𝑗∈𝐽

♯𝑋𝑗 =
∑
𝑗∈𝐽

2
𝑗 .

By uniqueness of the binary decomposition of ♯𝑌, we have 𝐼 = 𝐽,

which concludes the proof by definition of 𝐽.



4.3 Total MIAs are Positionally Injective in PCG 81

Reminder: The co-depth of 𝑎 is the max-

imal length 𝑘 of a causal chain

𝑎 = 𝑎1 _𝑞
1
. . . _𝑞

1
𝑎𝑘 .

4.3 Total MIAs are Positionally Injective in PCG

We now prove the core of the injectivity argument: given two mias 𝑝1 , 𝑝2

with characteristic expansions 𝑞1 , 𝑞2 and 𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭, we have

Claim 3: for all 𝑎+ ∈ |𝑞1|, 𝑎 ≈𝜑 𝜑(𝑎).

The idea of the proof is the following: we reason by induction on the

co-depth of 𝑎, using properties of bisimulations and Lemma 4.25, to prove

Claim 3. Then we deduce init(𝑞1) ∼𝜑 init(𝑞2), hence 𝑞1 ∼𝜑 𝑞2.

Proving Claim 3 requires some care, because cloning is defined via a

context and the successors of 𝑎 might not share the same. Hence we start

by defining a canonical form for pointers-preserving contexts.

Lemma 4.26 – Minimal context for clones

Consider 𝑞 ∈ Aug•(A) and 𝑎, 𝑏 ∈ |𝑞| such that 𝑎 ≈ 𝑏.

Then the minimal context for 𝑎, 𝑏 is either empty or Γ : {𝑐} � {𝑑}.

Proof. Assume, seeking a contradiction, that the minimal context Γ

has at least two distinct elements 𝑐1 , 𝑐2 ∈ dom(Γ). Remark that since

𝑎 ≈ 𝑏, there exists Δ a pointers-preserving context such that 𝑎 ∼Δ 𝑏,

and since Γ is a restriction of Δ (see Lemma 4.27), Γ also preserves

pointers.

Now, by condition (𝑖) of Definition 4.19, 𝑐1 ≤𝑞 𝑎 and 𝑐2 ≤𝑞 𝑎. But 𝑞

is forest shaped, so 𝑐1 ≤𝑞 𝑐2 or 𝑐2 ≤𝑞 𝑐1. W.l.o.g., assume that it is

the former. Then by courtesy, just(𝑐1) ≤𝑞 just(𝑐2) as well, and since

𝑐1 ≠ 𝑐2, we have:

𝑐1 ≤𝑞 just(𝑐2) (4.2)

For the same reason, Γ(𝑐1) ≤𝑞 Γ(𝑐2) or Γ(𝑐2) ≤𝑞 Γ(𝑐1).
If it is the latter, this entails that just(Γ(𝑐2)) ≤𝑞 just(Γ(𝑐1)) by courtesy;

i. e. since Γ preserves pointers, just(𝑐2) ≤𝑞 just(𝑐1). So just(𝑐1) =
just(𝑐2), and because 𝑐1 , 𝑐2 ≤𝑞 𝑎 we have 𝑐1 = 𝑐2, contradiction.

So, Γ(𝑐1) ≤𝑞 Γ(𝑐2), and Γ(𝑐1) ≠ Γ(𝑐2) by hypothesis. By courtesy,

this entails that:

Γ(𝑐1) ≤𝑞 just(Γ(𝑐2)) (4.3)

Moreover, Γ preserves pointers, so just(𝑐2) = just(Γ(𝑐2)). Hence, (4.3)

rewrites to:

Γ(𝑐1) ≤𝑞 just(𝑐2) (4.4)

By forestiality of 𝑞, (4.2) and (4.4) implies that 𝑐1 and Γ(𝑐1) are

comparable for≤𝑞 . But they are negative and share the same justifier,

so they have the same antecedent by courtesy. This implies 𝑐1 = Γ(𝑐1),
which contradicts condition (𝑖𝑖) of Definition 4.19.

Given clones with a context Γ, we can also extend Γ in some ways.



82 4 Positional Injectivity, for PCG and for HO

Lemma 4.27 – Extending contexts for clones

Consider 𝑞, 𝑝 ∈ Aug•(A) two augmentations such that there exists

an isomorphism 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭. Consider events 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|
and a pointing context Γ such that 𝑎 ∼𝜑

Γ
𝑏.

Then for any 𝑐 ∈ |𝑞| such that:

(𝑖) 𝑐 ∉ dom(Γ) (𝑖𝑖𝑖) 𝑐 ∉ ↑ 𝑎
(𝑖𝑖) 𝜑(𝑐) ∉ cod(Γ) (𝑖𝑣) 𝜑(𝑐) ∉ ↑ 𝑏

we have 𝑎 ∼𝜑
Γ∪{(𝑐,𝜑(𝑐))} 𝑏.

Moreover, for any 𝑐 ∈ |𝑞| and 𝑑 ∈ |𝑝| such that

(𝑖) 𝑐 ∉ dom(Γ) (𝑖𝑖𝑖) 𝑐 ∉ ↑ 𝑎 (𝑣) ∀𝑎′ ∈ ↑ 𝑎, just(𝑎′) ≠ 𝑐

(𝑖𝑖) 𝑑 ∉ cod(Γ) (𝑖𝑣) 𝑑 ∉ ↑ 𝑏 (𝑣𝑖) ∀𝑏′ ∈ ↑ 𝑏, just(𝑏′) ≠ 𝑑

then we also have 𝑎 ∼𝜑
Γ∪{(𝑐,𝑑)} 𝑏.

Proof. Straightforward by induction. Either 𝑐 is never used in the

bisimulation (i. e. no one in ↑ 𝑎 points to 𝑐), and we can pair it with

any 𝑑 which is not used either and add (𝑐, 𝑑) to Γ (as long as we

still have (Γ ∪ {(𝑐, 𝑑)}) ⊢ (𝑎, 𝑏)); or it is used with condition (4) of

Definition 4.7 and we can add (𝑐, 𝜑(𝑐)) to Γ and use condition (3)
instead.

Both those lemmas will help us constructing matching contexts in order

to prove Claim 3. Before moving on to the proof, we need a last lemma

on co-depth of bisimilar events.

Lemma 4.28 – Bisimilar events have the same co-depth

Consider 𝑞, 𝑝 ∈ Aug•(A) two augmentations such that there exists

an isomorphism 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭. Consider events 𝑎 ∈ |𝑞|, 𝑏 ∈ |𝑝|
and a pointing context Γ such that 𝑎 ∼𝜑

Γ
𝑏.

Then 𝑎 and 𝑏 have the same co-depth.

Proof. Straightforward by induction.

We now state our main auxiliary lemma:

Lemma 4.29 – Lifing clone classes

Consider 𝑞, 𝑝 ∈ Aug•(A) with 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭. Consider 𝑎+ ∈ |𝑞|
such that succ(𝑎) = ⋃

𝑖∈𝐼 𝑋𝑖 , where 𝐼 ⊆ ℕ and for 𝑖 ∈ 𝐼,

𝑋𝑖 = {𝑏𝑖 ,1 , . . . , 𝑏𝑖 ,2𝑖} ∈ Fork(𝑞) .

Then we have 𝑎 ≈𝜑 𝜑(𝑎), provided the two conditions hold:

if 𝑏𝑖 , 𝑗 _𝑞 𝑐𝑖 , 𝑗 , then 𝜑(𝑏𝑖 , 𝑗)_𝑝 𝑑𝑖 , 𝑗 and 𝑐𝑖 , 𝑗 ≈𝜑 𝑑𝑖 , 𝑗 , (4.5)

if 𝜑(𝑏𝑖 , 𝑗)_𝑝 𝑑𝑖 , 𝑗 , then 𝑏𝑖 , 𝑗 _𝑞 𝑐𝑖 , 𝑗 and 𝑐𝑖 , 𝑗 ≈𝜑 𝑑𝑖 , 𝑗 . (4.6)



4.3 Total MIAs are Positionally Injective in PCG 83

Proof. First, remark that:

𝜕𝑞(𝑎) = 𝜕𝑝(𝜑(𝑎)) , (4.7)

𝜑(just(𝑎)) = just(𝜑(𝑎)) . (4.8)

For any 𝑖 ∈ 𝐼 and 1 ≤ 𝑗 ≤ 2
𝑖
, we have 𝑏𝑖 , 𝑗 ≈𝜑 𝜑(𝑏𝑖 , 𝑗). Indeed:

▶ if 𝑏𝑖 , 𝑗 has no successor, then by 4.6 neither does 𝜑(𝑏𝑖 , 𝑗), and

𝑏𝑖 , 𝑗 ∼𝜑 𝜑(𝑏𝑖 , 𝑗);
▶ otherwise, 𝑏𝑖 , 𝑗 has a unique (by determinism) successor 𝑐𝑖 , 𝑗 ,

and by 4.5 we have 𝜑(𝑏𝑖 , 𝑗)_𝑝 𝑑𝑖 , 𝑗 and 𝑐𝑖 , 𝑗 ≈𝜑 𝑑𝑖 , 𝑗 .
In both cases, we obtain 𝑏𝑖 , 𝑗 ≈𝜑 𝜑(𝑏𝑖 , 𝑗). Let Γ𝑖 , 𝑗 be the minimal

context for 𝑏𝑖 , 𝑗 ≈𝜑 𝜑(𝑏𝑖 , 𝑗).
We wish to take the union of all Γ𝑖 , 𝑗 as the context for 𝑎 and 𝜑(𝑎),
but this is only possible if they are “compatible”: we must ensure

that for all 𝑒 ∈ |𝑞|, 𝑖 , 𝑘 ∈ 𝐼, 1 ≤ 𝑗 ≤ 2
𝑖
and 1 ≤ 𝑙 ≤ 2

𝑘
, if there exists

𝑐′
𝑖 , 𝑗
∈ ↑ 𝑏𝑖 , 𝑗 and 𝑐′

𝑘,𝑙
∈ ↑ 𝑏𝑘,𝑙 having both 𝑒 has a justifiter, then their

matching 𝑑′
𝑖 , 𝑗
∈ ↑𝜑(𝑏𝑖 , 𝑗) and 𝑑′

𝑘,𝑙
∈ ↑𝜑(𝑏𝑘,𝑙) also have the same

justifier.

This can only be a problem if 𝑒 ∈ dom(Γ𝑖 , 𝑗) or 𝑒 ∈ dom(Γ𝑘,𝑙), as

otherwise both justifiers for 𝑑′
𝑖 , 𝑗

and 𝑑′
𝑘,𝑙

are 𝜑(𝑒). By Lemma 4.26,

for all 𝑖 , 𝑗, the context Γ𝑖 , 𝑗 has either one or zero element. If all Γ𝑖 , 𝑗

are empty, we can directly lift the clone relation to 𝑎 and 𝜑(𝑎).
Otherwise, consider 𝑖 , 𝑗 such that:

Γ𝑖 , 𝑗 : {𝑒𝑖 , 𝑗} � { 𝑓𝑖 , 𝑗} .

By Definition 4.19, we have:

𝑒𝑖 , 𝑗 ∈ [𝑏𝑖 , 𝑗]−𝑞 and 𝑓𝑖 , 𝑗 ∈ [𝜑(𝑏𝑖 , 𝑗)]−𝑝 .

Could we have 𝑓𝑖 , 𝑗 = 𝜑(𝑏𝑖 , 𝑗)? Since Γ𝑖 , 𝑗 preseves pointers, 𝑒𝑖 , 𝑗 and

𝑓𝑖 , 𝑗 have the same justifier through 𝜑; but the only 𝑒 ∈ [𝑏𝑖 , 𝑗]−𝑞 such

that 𝜑(just(𝑒)) = just(𝜑(𝑏𝑖 , 𝑗)) is 𝑏𝑖 , 𝑗 , which contradicts minimality of

Γ𝑖 , 𝑗 . Hence we have:

𝑓𝑖 , 𝑗 ∈ [𝜑(𝑎)]−𝑝 .

Now, assume that for some 𝑘, 𝑙, there exists 𝑐′
𝑘,𝑙
∈ ↑ 𝑏𝑘,𝑙 such

that just(𝑐′
𝑘,𝑙
) = 𝑒𝑖 , 𝑗 . Since 𝑏𝑘,𝑙 ≈𝜑 𝜑(𝑏𝑘,𝑙), there is a matching

𝑑′
𝑘,𝑙
∈ ↑𝜑(𝑏𝑘,𝑙) such that:

𝜑(just(𝑒𝑖 , 𝑗)) = just(just(𝑑′𝑘,𝑙)) . (4.9)

For 𝑏𝑖 , 𝑗 ∼𝜑Γ𝑖 , 𝑗 𝜑(𝑏𝑖 , 𝑗) and 𝑏𝑘,𝑙 ∼𝜑Γ𝑘,𝑙 𝜑(𝑏𝑘,𝑙) to be compatible, we need

just(𝑑′𝑘,𝑙) = 𝑓𝑖 , 𝑗 .

Since Γ𝑖 , 𝑗 preserves pointers, we have

𝜑(just(𝑒𝑖 , 𝑗)) = just( 𝑓𝑖 , 𝑗) . (4.10)



84 4 Positional Injectivity, for PCG and for HO

Combining Equations 4.9 and 4.10, we obtain

just(just(𝑑′𝑘,𝑙)) = just( 𝑓𝑖 , 𝑗) . (4.11)

where just(𝑑′
𝑘,𝑙
) ∈ [𝑑′

𝑘,𝑙
]−𝑝 and 𝑓𝑖 , 𝑗 ∈ [𝜑(𝑎)]−𝑝 . But [𝜑(𝑎)]−𝑝 ⊆ [𝑑′𝑘,𝑙]−𝑝

which is a fully ordered set for≤𝑝 , so just(𝑑′
𝑘,𝑙
) and 𝑓𝑖 , 𝑗 are comparable

for ≤𝑝 . Moreover, they are negative, so by courtesy

just(just(𝑑′𝑘,𝑙)) = just( 𝑓𝑖 , 𝑗) iff pred(just(𝑑′𝑘,𝑙)) = pred( 𝑓𝑖 , 𝑗) .

Hence, we have pred(just(𝑑′
𝑘,𝑙
)) = pred( 𝑓𝑖 , 𝑗). Since just(𝑑′

𝑘,𝑙
) and 𝑓𝑖 , 𝑗

are comparable, we obtain just(𝑑′
𝑘,𝑙
) = 𝑓𝑖 , 𝑗 .

So all contexts Γ𝑖 , 𝑗 are compatible, and we can define:

Γ =
⋃
𝑖 , 𝑗

Γ𝑖 , 𝑗 .

Via Lemma 4.27, it follows that:

∀𝑖 , 𝑗 , 𝑏𝑖 , 𝑗 ∼𝜑Γ 𝜑(𝑏𝑖 , 𝑗) ,

which entails that 𝑎 ∼𝜑
Γ
𝜑(𝑎) by two steps of the bisimulation game.

Since all Γ𝑖 , 𝑗 ’s preserve pointers, so does Γ; hence 𝑎 ≈𝜑 𝜑(𝑎).

We are finally able to prove Claim 3 the core of the injectivity argument.

Lemma 4.30 – Key lemma

Consider 𝑝1 , 𝑝2 ∈ MIA(A) and 𝑞1 ∈ exp•(𝑝1), 𝑞2 ∈ exp•(𝑝2) two

characteristic expansions with 𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭.

Then for all 𝑎+ ∈ |𝑞1|, we have 𝑎 ≈𝜑 𝜑(𝑎).

Proof. Recall that the co-depth of 𝑎 ∈ |𝑞𝑖| is the maximal length 𝑘 of

a chain 𝑎 = 𝑎1 _𝑞𝑖 . . . _𝑞𝑖 𝑎𝑘 . We show by induction on 𝑘 the two

symmetric properties:

(𝑃𝑘) for all 𝑎+ ∈ |𝑞1| of co-depth 𝑘′ ≤ 𝑘, we have 𝑎 ≈𝜑 𝜑(𝑎),
(𝑃′

𝑘
) for all 𝑎+ ∈ |𝑞2| of co-depth 𝑘′ ≤ 𝑘, we have 𝑎 ≈𝜑−1

𝜑−1(𝑎).

(P0) First, consider 𝑎+ ∈ |𝑞1|maximal for ≤𝑞1
. By courtesy, 𝑎+ is

also maximal for ≤⟬𝑞1⟭, so 𝜑(𝑎) is maximal is 𝑞2 for both ≤⟬𝑞1⟭ and

≤𝑞1
. Since 𝜑 also preserves the arena image, we immediately have

𝑎 ∼𝜑 𝜑(𝑎)with the empty context, so 𝑎 ≈𝜑 𝜑(𝑎).

(P′0) By the same reasoning, for any 𝑎+ ∈ |𝑞2|maximal for ≤𝑞2
, we

have 𝑎 ≈𝜑−1

𝜑−1(𝑎).



4.3 Total MIAs are Positionally Injective in PCG 85

(Pk+2) Now, assuming (𝑃𝑘) and (𝑃′
𝑘
), consider 𝑎+ ∈ |𝑞1|of co-depth

𝑘 + 2. Then the successors of 𝑎 partition as: Remark: Since _𝑞
1

alternates polarities

and augmentations are +-covered, all

positive events have even co-depths, so

for the induction we go from (𝑃𝑘 ) to

(𝑃𝑘+2
) (same for (𝑃′

𝑘
) and (𝑃′

𝑘+2

)).

succ(𝑎) =
⊎
𝑖∈𝐼
𝑋𝑖

with for all 𝑖 ∈ 𝐼,

𝑋1

𝑖 = {𝑏𝑖 ,1 , . . . , 𝑏𝑖 ,2𝑖} ∈ Fork(𝑞1) .

Since configuration isomorphisms preserve causal links from posi-

tive to negative moves, the successors of 𝜑(𝑎) are:

succ(𝜑(𝑎)) =
⊎
𝑖∈𝐼

𝜑(𝑋𝑖) with ∀𝑖 ∈ 𝐼 , 𝑋𝑖 ∈ Fork(𝑞2) .

Now, for any 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 2
𝑖
, we claim:

if 𝑏𝑖 , 𝑗 _𝑞1
𝑐𝑖 ,𝑐 , then 𝜑(𝑏𝑖 , 𝑗)_𝑞2

𝑑𝑖 , 𝑗 and 𝑐𝑖 , 𝑗 ≈𝜑 𝑑𝑖 , 𝑗 . (4.12)

Indeed, consider 𝑌𝑖 , 𝑗 the clone equivalence class of 𝑐𝑖 , 𝑗 in 𝑞1. Since

the clone relation preserves co-depth, it follows from the induction

hypotheses (𝑃𝑘) and 𝑃′
𝑘
) and compositional properties of clones

(Lemma 4.23) that 𝜑(𝑌𝑖 , 𝑗) is a clone class. Then by the partition

lemma (4.25), ♯𝑌𝑖 , 𝑗 has 2
𝑖

in its binary decomposition – and as 𝜑
preserves forks, so does ♯𝜑(𝑌𝑖 , 𝑗). So by Lemma 4.25, there is 𝜑(𝑏𝑖 , 𝑗) ∈
𝜑(𝑋𝑖) and 𝑑𝑖 , 𝑗 ∈ 𝜑(𝑌𝑖 , 𝑗) such that 𝜑(𝑏𝑖 , 𝑗)_𝑞2

𝑑𝑖 , 𝑗 . Since both 𝜑(𝑐𝑖 , 𝑗)
and 𝑑𝑖 , 𝑗 are in 𝜑(𝑌𝑖 , 𝑗), we have 𝜑(𝑐𝑖 , 𝑗) ≈ 𝑑𝑖 , 𝑗 . Moreover, we have

𝑐𝑖 , 𝑗 ≈𝜑 𝜑(𝑐𝑖 , 𝑗) by induction hypothesis (𝑃𝑘). By compositional

properties of clones (Lemma 4.23), we obtain 𝑐𝑖 , 𝑗 ≈𝜑 𝑑𝑖 , 𝑗 , which

concludes the proof of Equation 4.12. Likewise, the mirror property

of 4.12 also holds. Having verified all hypotheses for the lifting

lemma (4.29), we can now apply it to get 𝑎 ≈𝜑 𝜑(𝑎).

(P′k+2) The reasonning is the same as for 𝑃𝑘+2.

Conclusion. For 𝑎+ ∈ |𝑞1| of any co-depth, 𝑎 ≈𝜑 𝜑(𝑎).

This lemma gives us the last missing piece to prove positional injectivity:

Theorem 4.31 – Positional Injectivity in PCG

Consider two total 𝑝1 , 𝑝2 ∈ MIA(A). Then:

𝑝1 � 𝑝2 ⇔ ⦗|𝑝1|⦘ = ⦗|𝑝2|⦘ .

Proof. The implication⇒ is immediate by definition.

For the reverse implication, assume ⦗|𝑝1|⦘ = ⦗|𝑝2|⦘. Consider a char-

acteristic expansion 𝑞1 ∈ exp•(𝑝1). By hypothesis, there exists

𝑞2 ∈ exp•(𝑝2) with 𝜑 : ⟬𝑞1⟭ � ⟬𝑞2⟭. By Lemma 4.5, 𝑞2 also is a

characteristic expansion. If both 𝑞𝑖 ’s are empty, there is nothing

to prove: we directly have 𝑝1 = 𝑝2 the empty augmentation on A.

Otherwise, 𝑞1 has an initial event init(𝑞1), and since 𝜑 preserves



86 4 Positional Injectivity, for PCG and for HO

minimality,

𝜑(init(𝑞1)) = init(𝑞2) .

We write 𝑎𝑖 = init(𝑞𝑖). Augmentations are negative, so both 𝑎𝑖 ’s are

negative. By determinism, they have unique successors

𝑏+
1
= succ(𝑎−

1
) and 𝑏+

2
= succ(𝑎−

2
) .

For 𝑖 = 1, 2, 𝑏𝑖 is the only event with its co-depth since all other

events except 𝑎𝑖 are below it. By Lemma 4.28, it means 𝑋𝑖 the clone

class of 𝑏𝑖 is a singleton 𝑋𝑖 = {𝑏𝑖}. But 𝜑 preserves clone classes

by Lemma 4.30, so 𝜑(𝑋1) = {𝜑(𝑏1)} also is a clone class. By the

partition lemma (4.25), we obtain 𝜑(𝑏1) = 𝑏2. But 𝑏1 ≈𝜑 𝜑(𝑏1) by

Lemma 4.30, so we get:

𝑏1 ≈𝜑 𝑏2 .

So 𝑏1 ∼𝜑 𝑏2 (with the emply context since for 𝑖 = 1, 2, the only event

above 𝑏𝑖 is 𝑎𝑖 , and we already have 𝑎2 = 𝜑(𝑎1)). Therefore,

𝑎1 ∼𝜑 𝑎2 i. e. 𝑞1 ∼𝜑 𝑞2 .

By Proposition 4.15, we finally obtain 𝑝1 � 𝑝2.

4.4 Positional Injectivity in HO

We now come back to our initial Question 4 from Chapter 3:

Question: are innocent strategies in HO games positionally injective?

4.4.1 Total Finite Innocent Strategies are Positionally
Injective in HO

Using the isomorphisms defined in the previous chapter between PCG
and HO, we can easily translate Theorem 4.31 to HO strategies.

Theorem 4.32 – Positional Injectivity in HO

Consider two total, finite innocent strategies 𝜎, 𝜏 on an arena A.

Then:

𝜎 = 𝜏⇔ ⦗|𝜎|⦘ = ⦗|𝜏|⦘.

Proof. The first implication⇒ is immediate.

For the reverse implication, assume⦗|𝜎|⦘ = ⦗|𝜏|⦘. But⦗|𝜎|⦘ = ⦗|MIA(𝜎)|⦘
by Proposition 3.48, so by Theorem 4.31 we obtain MIA(𝜎) � MIA(𝜏).
By Theorem 3.40, this implies 𝜎 = 𝜏.



4.4 Positional Injectivity in HO 87

(𝛼1
𝛼2 𝛼3) 𝛼4

q−
4q+

3

q−
2

q−
1

Figure 4.8: J(𝛼→ 𝛼→ 𝛼) → 𝛼KPCG.

q−
4

q+
3

q−
1

q+
3

q−
2

q−
2

q+
3

q−
2

q−
1

q+
3

q−
1

Figure 4.9: MII(J𝜆 𝑓 𝛼→𝛼→𝛼 . 𝑇1K𝐻𝑂 )

q−
4

q+
3

q−
2

q+
3

q−
1

q−
2

q+
3

q−
2

q−
1

q+
3

q−
1

Figure 4.10: MII(J𝜆 𝑓 𝛼→𝛼→𝛼 . 𝑇2K𝐻𝑂 )

q+
3

q−
1 . . . q−

1
q−

2 . . . q−
2

Figure 4.11: Bricks

4.4.2 Beyond Total Finite Strategies

Is it possible to expand this result to partial or infinite strategies?

Our proof method requires totality to ensure that being a characteristic

expansion is a property of the position of an augmentation, and finiteness

to be able to reason co-inductively on characteristic expansions.

We do not know if positional injectivity still holds for total infinite

strategies, or for partial finite strategies; however we do know that partial

infinite strategies in general are not positionally injective.

Consider the infinitary terms

𝑓 : 𝛼→ 𝛼→ 𝛼 ⊢ 𝑇1 , 𝑇2 , 𝐿, 𝑅 : 𝛼

recursively defined as

𝑇1 = 𝑓 𝑇2 𝑅, 𝑇2 = 𝑓 𝐿 𝑇1 , 𝐿 = 𝑓 𝐿 ⊥, 𝑅 = 𝑓 ⊥ 𝑅,

in an infinitary simply-typed 𝜆-calculus with divergence ⊥.

Now, consider 𝑀1 = 𝜆 𝑓 . 𝑇1 and 𝑀2 = 𝜆 𝑓 . 𝑇2, and their interpretation as

mii’s on the arena J(𝛼→ 𝛼→ 𝛼) → 𝛼KPCG. Figure 4.8 shows the arena,

using indices to help distinguish between the different moves. Figures

4.9 and 4.10 represent the respective interpretations p1 and p2 of 𝑀1 and

𝑀2, with loops indicating regular infinite trees. Clearly 𝑀1 and 𝑀2 are

different, and so are their interpretation p1 and p2.

We consider positions reached by well-opened plays – or equivalently, by

(iso-)expansions of the isogmentations presented in Figures 4.9 and 4.10.

Ignoring the initial q−
4

, a position is a multiset of bricks as in Figure 4.11,

with 𝑖 ∈ ℕ occurrences of q−
1

and 𝑗 ∈ ℕ occurrences of q−
2
. A brick with

𝑖 = 𝑗 = 0 is a leaf. The position is balanced if it has as many Opponent as

Player moves.

Now, any balanced position can be realized in p1 by first placing bricks

with occurrences of both q−
1

and q−
2

greedily alongside the spine – shown

in red in Figures 4.9 and 4.10. At each step, we continue from only one

of the copies opened, leaving others dangling. If this gets stuck, apart

from leaves we are left with only q−
1

’s, or only q−
2

’s, and in any case there

is always a matching non-spine infinite branch available. Finally, leaves

can always be placed as their number matches that of trailing negative

moves by the balanced hypothesis. The same goes for p2: any balanced

position can be reached with an iso-expansion of p2.

Moreover, all positions reached by expansions of p1 or of p2 are balanced,

by determinism and +-coveredness.

We obtain that the positions of p1 and the positions of p2 both are exactly
the balanced positions in J(𝛼→ 𝛼→ 𝛼) → 𝛼K. Hence,

⦗|J𝜆 𝑓 𝛼→𝛼→𝛼 . 𝑇1KHO|⦘ = ⦗|J𝜆 𝑓 𝛼→𝛼→𝛼 . 𝑇2KHO|⦘,

and positional injectivity fails.



88 4 Positional Injectivity, for PCG and for HO

4.5 Conclusion

Innocent strategies in HO games are not positional, but we show that total
finite innocent strategies enjoy positional injectivity – and likewise, total

finite mia’s in PCG are positionally injective. However, the property fails

in general, for partial infinite innocent strategies.

This result may be useful in the game semantics toolbox: proving two

(total, finite) innocent strategies equal now requires only to compare their

positions, which can be easier to handle than plays with pointers.



Composition and Resource Calculus
Semantics



90

[5]: Blondeau-Patissier, Clairambault,

and Auclair (2023), ‘Strategies as Re-

source Terms, and Their Categorical Se-

mantics’

[3]: Blondeau-Patissier (2024), ‘Resource

Categories from Differential Categories’

In this part, we introduce the dynamical aspect of Pointer Concurrent Games:
we define the composition of augmentations and expose the categorical structure
of PCG. We also study the interpretation of resource calculus in PCG.

In Chapter 5, we start by constructing a bĳection between isogmentations and
normal resource terms.

In Chapter 6, we define the composition of augmentations, and present PCG
as a category. We also show how this composition coincides with the one from
HO games, following our previous isomorphism between PCG and HO.

In Chapter 7, we introduce resource categories, a new categorical structure
that is relevant to obtain a model of the resource calculus. We prove that there is a
sound interpretation of resource terms in a resource category. We also investigate
the links with differential categories.

In Chapter 8, we finally show that PCG indeed forms a resource category,
completing the previous isomorphism between resource calculus and games: the
correspondence between normal resource terms and isogmentations refines into
a denotational interpretation, invariant under reduction, of resource terms as
“strategies” – weighted sums of isogmentations.

Most of this section is adapted from the articles [5] and [3].



Reminder: Terms are given by the fol-

lowing grammar (see Definition 1.14):

𝑠, 𝑡 , . . .F 𝑥 | 𝜆𝑥.𝑠 | 𝑠 𝑡
𝑠, 𝑡 , . . .F [𝑠1 , . . . , 𝑠𝑛] .

Augmentations are Normal
Resource Terms 5

5.1 Extensional simply-typed
resource calculus . . . . 91

5.2 A few additional PCG
constructions . . . . . . 94

5.3 The isomorphism . . . . 95
5.4 Conclusion . . . . . . . . 102

As stated in Chapter 1, resource terms and plays in HO games are similar:

Tsukada and Ong [40]

[40]: Tsukada and Ong (2016), ‘Plays as

Resource Terms via Non-idempotent In-

tersection Types’

showed that certain normal and 𝜂-long resource

terms correspond bĳectively to plays in HO games, up to Opponent’s
scheduling of the independent explorations of separate branches of the term. This

scheduling is formalized by Melliès’ homotopy equivalence on plays (see

Chapter 3).

Our game model PCG relies on augmentations, which correspond to

HO plays quotiented by this relation; so it is natural to investigate the

relation between augmentations and resource terms. We could try and

compose the bĳections from Δ to HO and from HO to PCG, but the

correspondence between Δ and PCG can actually be studied on its own,

in a more direct way than the correspondence presented in [40]. In this

chapter, we give the explicit bĳection between (normal, 𝜂-long) resource

terms and isogmentations (isomorphism classes of augmentations).

First, we define an extensional typed resource calculus (Section 5.1), a variant

of the usual typed resource calculus with typing rules ensuring that

normal terms are in 𝜂-long form. We give a few additional constructions

for PCG in Section 5.2, before constructing the bĳection between normal

terms and isogmentations in Section 5.3.

5.1 Extensional simply-typed resource calculus

5.1.1 Typing rules

We start by defining an extensional simply-typed resource calculus. In-

deed, the existing isomorphism from [40] is between quotiented plays

and normal, 𝜂-long resource terms, because game semantics is inherently

extensional. Hence, we set typing rules which ensure normal terms are

already in an 𝜂-long form.

Recall the usual grammar of types:

𝐴, 𝐵, 𝐶, . . .F 𝛼 | 𝐴→ 𝐵

with a single base type 𝛼. If
®𝐴 = ⟨𝐴1 , . . . , 𝐴𝑛⟩, we write:

®𝐴→ 𝐵
def

= 𝐴1 → · · · → 𝐴𝑛 → 𝐵 = 𝐴1 → (· · · → (𝐴𝑛 → 𝐵) · · · ) .

Then any type 𝐵 can be written uniquely as 𝐵 = ®𝐴→ 𝛼.

We fix a type for each variable, so that each type has infinitely many

variables, and write 𝑥 : 𝐴 when 𝐴 is the type of 𝑥. A typing context Γ is

a finite set of typed variables, written as an enumeration:

Γ = 𝑥1 : 𝐴1 , . . . , 𝑥𝑛 : 𝐴𝑛

and abbreviated as ®𝑥 :
®𝐴.



92 5 Augmentations are Normal Resource Terms

Γ, 𝑥 : 𝐴 ⊢Tm 𝑠 : 𝐵
(abs)

Γ ⊢Tm 𝜆𝑥.𝑠 : 𝐴→ 𝐵

Γ ⊢Tm 𝑠 : 𝐴→ 𝐵 Γ ⊢Bg 𝑡 : 𝐴
(app)

Γ ⊢Tm 𝑠 𝑡 : 𝐵

Γ, 𝑥 :
®𝐴→ 𝛼 ⊢Sq ®𝑡 :

®𝐴
(var)

Γ, 𝑥 :
®𝐴→ 𝛼 ⊢Tm 𝑥 ®𝑡 : 𝛼

Γ ⊢Tm 𝑠1 : 𝐴 · · · Γ ⊢Tm 𝑠𝑛 : 𝐴
(bag)

Γ ⊢Bg [𝑠1 , . . . , 𝑠𝑛] : 𝐴

Γ ⊢Bg 𝑠1 : 𝐴1 · · · Γ ⊢Bg 𝑠𝑛 : 𝐴𝑛
(seq)

Γ ⊢Sq ⟨𝑠1 , . . . , 𝑠𝑛⟩ : ⟨𝐴1 , . . . , 𝐴𝑛⟩

Figure 5.1: Typing rules for the simply-typed 𝜂-long resource calculus

Reminder: For a bag 𝑡, the sum indexed

over 𝑡 ◁ 𝑡1 ∗ · · · ∗ 𝑡𝑛 is the sum over all

𝑛-partitionings of 𝑡 (see subsection 1.3.1).

We may then also write:

𝜆®𝑥.𝑠 def

= 𝜆𝑥1. . . .𝜆𝑥𝑛 .𝑠 .

We call resource sequence any sequence ®𝑠 ∈ 𝒮 [Δ] = M𝑓 (Δ)∗. Given

a term 𝑠 and a resource sequence ®𝑡 = ⟨𝑡1 , . . . , 𝑡𝑘⟩, we also define the

application:

𝑠 ®𝑡 def

= 𝑠 𝑡1 · · · 𝑡𝑘 = (· · · (𝑠 𝑡1) · · · ) 𝑡𝑘 .

Finally, we give the type system in Figure 5.1. There are three different

kind of judgements:

▶ Γ ⊢Tm 𝑠 : 𝐴 for terms,

▶ Γ ⊢Bg 𝑠 : 𝐴 for bags,

▶ Γ ⊢Sq ®𝑠 :
®𝐴 for sequences.

We request bags to be typed uniformly (all the elements of a bag share

the same type) and variables to be fully applied.

For X ∈ {Tm, Bg, Sq}, we write X(Γ;𝐴) for the set of expressions 𝑠 such

that Γ ⊢X 𝑠 : 𝐴. We extend the type system to finite sums of terms with:

Γ ⊢X
∑
𝑖∈𝐼

𝑠𝑖 : 𝐴 if Γ ⊢X 𝑠𝑖 : 𝐴 for each 𝑖 ∈ 𝐼 .

We write ΣX(Γ;𝐴) for Σ[X(Γ;𝐴)].

5.1.2 Reduction and substitution

We extend resource substitution to sequences by setting:

⟨𝑠1 , . . . , 𝑠𝑛⟩⟨𝑡/𝑥⟩
def

=
∑

𝑡◁𝑡1∗···∗𝑡𝑛
⟨𝑠1⟨𝑡1/𝑥⟩, . . . , 𝑠𝑛⟨𝑡𝑛/𝑥⟩⟩ .

This implies:

(𝑠 ®𝑢)⟨𝑡/𝑥⟩ =
∑
𝑡◁𝑡1∗𝑡2

(𝑠⟨𝑡1/𝑥⟩) (®𝑢⟨𝑡2/𝑥⟩) ,

which generalizes the application case of Definition 1.15.



5.1 Extensional simply-typed resource calculus 93

Reminder:{ is the resource reduction,

defined in Figure 1.12.

Remark: The strong normalization result

from Chapter 1 (Theorem 1.16) still holds

for this typed setting.

Reminder: A normal resource term 𝑠 of

type
®𝐴→ 𝛼 is 𝜂-long if it has the shape

𝜆𝑥1 . . . .𝜆𝑥| ®𝐴| .𝑡

with 𝑡 a normal term of type 𝛼 (which

must then be a fully applied variable).

This type system enjoys subject reduction with respect to{. As is usual,

the key result for subject reduction is a substitution lemma.

Lemma 5.1 – Substitution

If 𝑠 ∈ X(Γ, 𝑥 : 𝐵;𝐴) and 𝑡 ∈ Bg(Γ; 𝐵) then 𝑠⟨𝑡/𝑥⟩ ∈ ΣX(Γ;𝐴).

Proof. By mutual induction on the three syntactic cases.

Lemma 5.2 – Subject reduction

If 𝑆 ∈ ΣX(Γ;𝐴) and 𝑆 { 𝑆′ then 𝑆′ ∈ ΣX(Γ;𝐴).

Proof. We first treat the case of 𝑆 = 𝑠 ∈ X(Γ;𝐴) by induction on

the definition of the reduction 𝑠 { 𝑆′: the case of a redex is by the

substitution lemma, and the other cases follow by contextuality. The

extension to sums is straightforward.

5.1.3 Normalisation

For X ∈ {Tm, Bg, Sq}, we write Xnf(Γ;𝐴) for the elements of X(Γ;𝐴) that

are in normal form.

Lemma 5.3 – Typing normal forms

We have 𝑠 ∈ Xnf(Γ;𝐴) if and only if Γ ⊢X 𝑠 : 𝐴 is derivable without

using the application rule (app).

Proof. Given a derivation tree for Γ ⊢X 𝑠 : 𝐴 using rule (app) at

least once, consider a minimal subderivation with this property:

it must have an instance of (app) at its root, and its premises are

derived without (app). The left premise must thus be derived by

(abs): we have ruled out (app), and the conclusion of (var) is never

an arrow type. We thus obtain a redex.

This property ensures that all normal resource terms are 𝜂-long.

Corollary 5.4

Consider 𝑠 ∈ Tmnf(Γ;𝐴→ 𝐵), then we can write:

𝑠 = 𝜆𝑥.𝑡 with

{
𝑥 : 𝐴 ,

𝑡 ∈ Tmnf(Γ, 𝑥 : 𝐴; 𝐵) .

For 𝑠 ∈ Tmnf(Γ; 𝛼), we can write:

𝑠 = 𝑦 ®𝑢 with

{
𝑦 :
®𝐶 → 𝛼 ∈ Γ ,

®𝑢 ∈ Sqnf(Γ;
®𝐶) .



94 5 Augmentations are Normal Resource Terms

a−
1

a+
2

and

b−
1

b+
2

Figure 5.2: Arena A and arena B

a−
1

a+
2

b−
1

b+
2

Figure 5.3: Arena A ⊗ B

a+
1

a−
2

b−
1

b+
2

Figure 5.4: Arena A⇒ B

a+
1

a−
2

b−
1

b+
2

Figure 5.5: Arena A ⊢ B

5.2 A few additional PCG constructions

Before detailing the isomorphism between PCG and Δ, we need a few

additional constructions on arenas and configurations.

5.2.1 Construction on arenas – HomGame

In HO games, the categorical structure is obtained via the arrow construc-

tor: given two arenas A and B, morphisms from A to B are strategies on

the arena A ⇒ B. However A ⇒ B is only defined for B well-opened –

otherwise, we lose the tree structure. This arrow construction is needed

because strategies can have multiple initial moves: in a non well-opened

play, we need the information given by pointers to match moves in A
with initial moves in B, and we have to follow pointers in the hiding

phase when composing two strategies.

In PCG however, the causal information alone is enough to reconstruct

the causal order, and pointers to the initial moves are no longer needed,

meaning the composition will be slightly simpler. Hence we introduce

the hom construction A ⊢ B, which is very alike A⇒ B except we do not

add links between A and B.

Of course, this “simplification” implies some more work when going

from PCG to HO games, because we now need to take into account the

slightly different categorical structure.

Definition 5.5 – HomGame

Consider arenas A1 and A2. Then A1 ⊢ A2 is the arena defined with:

|A1 ⊢ A2|
def

= |A1| + |A2| ,
(𝑖 , a) ≤A1⊢A2

(𝑗 , b) ⇔ (𝑖 = 𝑗) and (a ≤A𝑖 b) ,
polA1⊢A2

((1, a)) = − polA1

(a) ,
polA1⊢A2

((2, a)) = polA2

(a) .

Then A1 ⊢ A2 is clearly an arena. Remark that if A1 and A2 are both

negative, then A1 ⊢ A2 is not (because of the minimal events from A1,

which are now positive).

5.2.2 Constructions on configurations

The construction A1 ⊗ A2 can be extended to configurations.

Definition 5.6 – Product of configurations

Consider arenas A1, A2 and configurations 𝑥1 ∈ Conf(A1) and

𝑥2 ∈ Conf(A2).
Then 𝑥1 ⊗ 𝑥2 is the configuration on A1 ⊗ A2 defined with:

|𝑥1 ⊗ 𝑥2|
def

= |𝑥1| + |𝑥2|
(𝑖 , 𝑎) ≤𝑥1⊗𝑥2

(𝑗 , 𝑏) ⇔ (𝑖 = 𝑗) and (𝑎 ≤𝑥𝑖 𝑏)
𝜕𝑥1⊗𝑥2

((𝑖 , 𝑎)) = (𝑖 , 𝜕𝑥𝑖 (𝑎)) .



5.3 The isomorphism 95

Reminder: o is the arena with a single

(negative) move.

Remark that again, this construction extends to the 𝑛-ary product in the

obvious way.

Likewise, the construction A1 ⊢ A2 can be extended to configurations.

Definition 5.7 – Configuration 𝑥1 ⊢ 𝑥2

Consider arenas A1, A2 and configurations 𝑥1 ∈ Conf(A1) and

𝑥2 ∈ Conf(A2).
Then 𝑥1 ⊢ 𝑥2 is the configuration on A1 ⊢ A2 defined with:

|𝑥1 ⊢ 𝑥2|
def

= |𝑥1| + |𝑥2|
(𝑖 , 𝑎) ≤𝑥1⊢𝑥2

(𝑗 , 𝑏) ⇔ (𝑖 = 𝑗) and (𝑎 ≤𝑥𝑖 𝑏)
𝜕𝑥1⊢𝑥2

((𝑖 , 𝑎)) = (𝑖 , 𝜕𝑥𝑖 (𝑎)) .

One can easily check that 𝑥1 ⊢ 𝑥2 ∈ Conf(A1 ⊢ A2). Again, remark that

𝑥1 ⊢ 𝑥2 is no longer negative if 𝑥1, 𝑥2 are negative. Remark that here,

both constructions ⊗ and ⊢ are almost identical: the only difference is the

destination arena, where A1 ⊗ A2 preserves polarities of both A1 and A2

while A1 ⊢ A2 inverses polarities for the events occurring in A1.

Both ⊗ and ⊢ clearly preserve isomorphisms.

Lemma 5.8 – ⊗ and ⊢ preserve isomorphisms

Consider arenas A1, A2 and configurations 𝑥𝑖 , 𝑦𝑖 ∈ Conf(A𝑖) with

𝑥𝑖 � 𝑦𝑖 for 𝑖 = 1, 2. Then,

𝑥1 ⊗ 𝑥2 � 𝑦1 ⊗ 𝑦2 and 𝑥1 ⊢ 𝑥2 � 𝑦1 ⊢ 𝑦2 .

Proof. Fixing the configuration isomorphisms

𝜑𝑖 : 𝑥𝑖 � 𝑦𝑖 for 𝑖 = 1, 2,

we construct

𝜑1 + 𝜑2 : |𝑥1| + |𝑥2| → |𝑦1| + |𝑦2|
(𝑖 , 𝑒) ↦→ (𝑖 , 𝜑𝑖(𝑒))

which is a configuration isomorphism for both constructions.

5.3 The isomorphism

Now we can recast Tsukada and Ong’s correspondence as a bĳection

between normal resource terms in this extensional setting and isog-

mentations. We first show how the structure of each syntactic kind

is reflected by isogmentations of the appropriate type: in particular,

terms will be mapped to pointed isogmentations, and bags to general

isogmentations.

Notation: For any tuple of arenas ®A = ⟨A1 , . . . , A𝑛⟩, we write:

®A⇒ o def

= A1 ⇒ . . .⇒ A𝑛 ⇒ o and ®A⊗ def

= A1 ⊗ . . . ⊗ A𝑛 .



96 5 Augmentations are Normal Resource Terms

Reminder:
Γ ⊢Bg 𝑠1 : 𝐴1 · · · Γ ⊢Bg 𝑠𝑛 : 𝐴𝑛

(seq)

Γ ⊢Sq ⟨𝑠1 , . . . , 𝑠𝑛⟩ : ⟨𝐴1 , . . . , 𝐴𝑛⟩

5.3.1 Types and contexts

We start by giving an interpretation for types:

J𝛼K def

= o

J⟨𝐴1 , . . . , 𝐴𝑛⟩K
def

= J𝐴1K ⊗ · · · ⊗ J𝐴𝑛K

J𝐴→ 𝐵K def

= J𝐴K⇒ J𝐵K

For contexts, we set JΓK def

=
⊗
(𝑥:𝐴)∈ΓJ𝐴K.

5.3.2 Resource sequences

To reflect the syntactic formation rule for sequences, we show that any

isogmentation on an arena G ⊢ A1 ⊗ . . . ⊗ A𝑛 can be decomposed in a

tuple of isogmentations on the G ⊢ A𝑖 ’s – and reciprocally.

Definition 5.9 – Tupling of augmentations

Consider negative arenas G and ®A = ⟨A1 , . . . , A𝑛⟩; and augmenta-

tions 𝑞𝑖 ∈ Aug(G ⊢ A𝑖) for 1 ≤ 𝑖 ≤ 𝑛.

We set ®𝑞 = ⟨𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑛⟩Aug ∈ Aug(G ⊢ ®A⊗)with

|®𝑞| def

=

𝑛∑
𝑖=1

|𝑞𝑖| ,
{

𝜕®𝑞(𝑖 , 𝑒)
def

= (1, g) if 𝜕𝑞𝑖 (𝑒) = (1, g),
𝜕®𝑞(𝑖 , 𝑒)

def

= (2, (𝑖 , a)) if 𝜕𝑞𝑖 (𝑒) = (2, a),

with the two orders ≤®𝑞 and ≤⟬®𝑞⟭ inherited.

It is immediate that this construction preserves isomorphisms, so that it

extends to isogmentations.

Proposition 5.10 – Tuplings of isogmentations

The previous construction on augmentations induces a bĳection

⟨−, . . . ,−⟩Isog :

𝑛∏
𝑖=1

Isog(G ⊢ A𝑖) � Isog(G ⊢ ®A⊗) .

Proof. Injective. As an isomorphism must preserve _ and display

maps, any isomorphism

𝜑 : ⟨𝑞𝑖 | 𝑖 ∈ 𝐼⟩Aug � ⟨𝑝𝑖 | 𝑖 ∈ 𝐼⟩Aug

decomposes uniquely into a sequence of 𝜑𝑖 : 𝑞𝑖 � 𝑝𝑖 , as required.

Surjective. Consider 𝑞 ∈ Aug(G ⊢ ®A⊗). By forestiality, any 𝑎 ∈ |𝑞| has

a unique minimal antecedent, sent by the display map (via negativity)

to one of the A𝑖 ’s – we say that 𝑎 is above A𝑖 . Defining accordingly

𝑞𝑖 as 𝑞 restricted to the events above A𝑖 , we easily construct an

isomorphism 𝑞 � ⟨𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑛⟩Aug as required.

Reminder: An augmentation 𝑞 is:

▶ forestial: both ⟨|𝑞|,≤⟬𝑞⟭⟩ and

⟨|𝑞|,≤𝑞⟩ are finite forests;

▶ negative: if 𝑎 is minimal for ≤𝑞 ,
then pol(𝑎) = −.



5.3 The isomorphism 97

Reminder:
Γ ⊢Tm 𝑠1 : 𝐴 · · · Γ ⊢Tm 𝑠𝑛 : 𝐴

(bag)

Γ ⊢Bg [𝑠1 , . . . , 𝑠𝑛] : 𝐴

Reminder:
Γ, 𝑥 : 𝐴 ⊢Tm 𝑠 : 𝐵

(abs)

Γ ⊢Tm 𝜆𝑥.𝑠 : 𝐴→ 𝐵

5.3.3 Resource bags

The next step is to reflect the typing rule for bags, by showing that

isogmentations can be seen as bags of pointed isogmentations.

Definition 5.11 – Bag of augmentations

Consider negative arenas G and A, and 𝑞1 , 𝑞2 ∈ Aug(G ⊢ A).
We set 𝑞1 ∗ 𝑞2 ∈ Aug(G ⊢ A)with:

▶ events |𝑞1 ∗ 𝑞2| = |𝑞1| + |𝑞2|,
▶ display map 𝜕𝑞1∗𝑞2

(𝑖 , 𝑎) = 𝜕𝑞𝑖 (𝑎),
▶ the two orders ≤𝑞1∗𝑞2

and ≤⟬𝑞1∗𝑞2⟭ inherited.

This generalizes to an 𝑛-ary operation ΠAug(−) in the obvious way, which

preserves isomorphisms. The operation induced on isogmentations,

denoted by ΠIsog(−), is associative and admits as neutral element the

empty isogmentation 0 ∈ Isog(G ⊢ 𝐴) with (a unique representative

0 ∈ Aug(G ⊢ 𝐴)with) no event.

Proposition 5.12 – Bags and pointedness

The previous construction on augmentations induces a bĳection

ΠIsog(−) : M𝑓 (Isog•(G ⊢ A)) � Isog(G ⊢ A) .

Proof. Injective. Consider 𝑞1 , . . . , 𝑞𝑛 , 𝑝1 , . . . , 𝑝𝑚 ∈ Isog(G ⊢ A).
Because the 𝑞𝑖 ’s and 𝑝𝑖 ’s are pointed and isomorphisms preserve

the forest structure, an isomorphism 𝜑 : 𝑞1 ∗ · · · ∗ 𝑞𝑛 � 𝑝1 ∗ · · · ∗ 𝑝𝑚
forces 𝑚 = 𝑛 and induces a permutation 𝜋 on 𝑛 with a family of

isomorphisms 𝜑𝑖 : 𝑞𝑖 � 𝑝𝜋(𝑖) for 1 ≤ 𝑖 ≤ 𝑛 . This implies:

ΠIsog[𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑛] = ΠIsog[𝑝𝑖 | 1 ≤ 𝑖 ≤ 𝑛] .

Surjective. As any 𝑞 ∈ Aug(G ⊢ A) is finite, it has a finite set 𝐼 of

initial moves. As 𝑞 is forestial, any 𝑎 ∈ |𝑞| is above exactly one initial

move. For 𝑖 ∈ 𝐼, we write 𝑞𝑖 ∈ Aug•(G ⊢ A) the restriction of 𝑞 above

𝑖; then 𝑞 � 𝑞1 ∗ · · · ∗ 𝑞𝑛 as required.

5.3.4 Currying

For the typing rule for abstractions, we need a bĳection between aug-

mentations of G ⊗ A ⊢ B and augmentations of G ⊢ A ⇒ B. These two

arenas are almost identical; the events are the same (up to the tags), but

G ⊢ A⇒ B adds links between events of A and events of B. Thankfully,

given an augmentation 𝑞 ∈ Aug(G ⊗ A ⊢ B), the forestial structure of 𝑞

ensures that these links can be uniquely constructed when turning 𝑞 into

an augmentation of G ⊢ A⇒ B.



98 5 Augmentations are Normal Resource Terms

Remark: If 𝜕𝑞(𝑎) = (1, (2, a)), then

𝜕𝑞(init(𝑎)) = (2, b) by negativity of 𝑞.

Reminder:

Γ, 𝑥 :
®𝐴→ 𝛼 ⊢Sq ®𝑡 :

®𝐴
(var)

Γ, 𝑥 :
®𝐴→ 𝛼 ⊢Tm 𝑥 ®𝑡 : 𝛼

Reminder: o is the arena with exactly

one negative move, written q−.

Lemma 5.13 – Unique initial ancestor

Consider 𝑞 ∈ Aug(A ⊢ B). For every 𝑎 ∈ |𝑞|, there exists a unique

𝑏 ∈ min≤𝑞 (𝑞) such that 𝑏 ≤𝑞 𝑎.
This event 𝑏 is called the initial ancestor of 𝑎, denoted by init(𝑎).

Proof. ≤𝑞 is a finitary forest.

Definition 5.14 – Currying of augmentation

Consider negative arenas G, A and B. We have a bĳection

Λ
Aug
G,A,B : Aug(G ⊗ A ⊢ B) � Aug(G ⊢ A⇒ B)

leaving the augmentation unchanged except for the display map,

which is reassigned following:

𝜕Λ(𝑞)(𝑎) = (1, b) if 𝜕𝑞(𝑎) = (1, (1, b))
𝜕Λ(𝑞)(𝑎) = (2, (2, b)) if 𝜕𝑞(𝑎) = (2, b)
𝜕Λ(𝑞)(𝑎) = (2, (1, (b, c))) if 𝜕𝑞(𝑎) = (1, (2, c))

and 𝜕𝑞(init(𝑎)) = (2, b);

and for the static order, which is likewise completed with static

links between events in A and B:

𝑎′ ≤⟬Λ(𝑞)⟭ 𝑎 iff

(
𝑎′ ≤⟬𝑞⟭ 𝑎

)
or

(
𝜕𝑞(𝑎) = (1, (2, a)) and 𝑎′ = init(𝑎)

)
.

Since isomorphisms of augmentations are order-isomorphisms and pre-

serve display maps, the definition of this bĳection is obviously compatible

with isomorphisms. Moreover, the causal order is unchanged, so in par-

ticular it preserves well-openedness.

Proposition 5.15 – Currying of isogmentations

The previous bĳection defined on augmentations induces bĳections:

Λ
Isog
Γ,A,B : Isog(Γ ⊗ A ⊢ B) � Isog(Γ ⊢ A⇒ B)

Λ
Isog•
Γ,A,B : Isog•(Γ ⊗ A ⊢ B) � Isog•(Γ ⊢ A⇒ B)

5.3.5 Head occurrence

By Lemma 5.3, the only remaining case for typed normal forms is (var).

Consider G = A1 ⊗ . . . ⊗ A𝑛 , where each A𝑖 is a negative arena of the

shape A𝑖 = ®B𝑖 ⇒ o � ®B⊗
𝑖
⇒ o with ®B𝑖 = ⟨B𝑖 ,1 , . . . , B𝑖 ,𝑝𝑖 ⟩. Given an

augmentation 𝑞 ∈ Aug(G ⊢ ®𝐵𝑖
⊗
), we construct the 𝑖-lifting of 𝑞:

□𝑖(𝑞) ∈ Aug•(G ⊢ o) .



5.3 The isomorphism 99

A1 ⊗ . . . ( ®B𝑖
⊗ ⇒ o) . . . ⊗ A𝑛 ⊢ o

𝑞

q−
q+
𝑖

𝑎−
1

. . . 𝑎−
𝑘

Figure 5.6: □𝑖(𝑞).

Intuitively, □𝑖(𝑞) is the augmentation which:

▶ starts by q− the initial Opponent move of G ⊢ o,

▶ plays q+
𝑖

the initial move from A𝑖 (which is negative in A𝑖 by

negativity, thus positive in G ⊢ o),

▶ then proceeds as 𝑞: writing 𝑎−
1
, . . . , 𝑎−

𝑘
the minimal moves of 𝑞,

they must be mapped to initial events in G ⊢ ®B𝑖
⊗

, hence to initial

events of ®B𝑖
⊗

by negativity of 𝑞; so they can be played in the 𝑖-th

component of G.

We obtain a pointed augmentation on G ⊢ o, depicted in Figure 5.6.

Recall that q is the only event of o.

We keep the isomorphism A𝑖 � ®B⊗𝑖 ⇒ o
implicit whenever we write moves in A𝑖 ,
so that we can consider (𝑖 , (2, q)) ∈ |G|,
and (𝑖 , (1, b)) ∈ |G| for any b ∈ |®B⊗

𝑖
|.

More formally:

Definition 5.16 – 𝑖-lifting of an augmentation

Consider G = A1 ⊗ . . . ⊗ A𝑛 , where each A𝑖 is a negative arena of

the shape A𝑖 = ®B𝑖 ⇒ o � ®B⊗
𝑖
⇒ o with ®B𝑖 = ⟨B𝑖 ,1 , . . . , B𝑖 ,𝑝𝑖 ⟩.

Consider also an augmentation 𝑞 ∈ Aug(G ⊢ ®𝐵𝑖
⊗
).

The 𝑖-lifting of 𝑞, written □𝑖(𝑞) ∈ Aug•(G ⊢ o), is defined with:

▶ events |□𝑖(𝑞)|
def

= |𝑞| ⊎ {⊖,⊕},
▶ static order ≤⟬□𝑖 (𝑞)⟭ the least partial order containing:

(1, 𝑎) ≤⟬□𝑖 (𝑞)⟭ (1, 𝑏) if 𝑎 ≤⟬𝑞⟭ 𝑏,

(2,⊕) ≤⟬□𝑖 (𝑞)⟭ (1, 𝑎) if 𝜕𝑞(𝑎) = (2, b),

▶ causality order ≤□𝑖 (𝑞) the order ≤𝑞 prefixed with ⊖ _ ⊕, i. e.
for all 𝑎 ≤𝑞 𝑏 ∈ |𝑞| and 𝑒 ∈ {⊕,⊖},

(1, 𝑎) ≤□𝑖 (𝑞) (1, 𝑏) ; (2, 𝑒) ≤□𝑖 (𝑞) (1, 𝑎) ; (2,⊖) <□𝑖 (𝑞) (2,⊕) ,

▶ display map 𝜕□𝑖 (𝑞) the map given by:

𝜕□𝑖 (𝑞)((2,⊖))
def

= (2, q),
𝜕□𝑖 (𝑞)((2,⊕))

def

= (1, (𝑖 , (2, q))),
𝜕□𝑖 (𝑞)((1, 𝑎))

def

= (1, a) if 𝜕𝑞(𝑎) = (1, a),
𝜕□𝑖 (𝑞)((1, 𝑏))

def

= (1, (𝑖 , (1, b))) if 𝜕𝑞(𝑏) = (2, b).

This construction defines an augmentation on G ⊢ o, with a unique

initial event (2,⊖). It again preserves isomorphisms, thus extending to

isogmentations.

Proposition 5.17 – Lifting of isogmentations

The previous construction on augmentations induces a bĳection

□−(−) : {1, . . . , 𝑛} ×
∑

1≤𝑖≤𝑛
Isog(G ⊢ ®B⊗

𝑖
) � Isog•(G ⊢ o) .

Proof. Injective. Given isomorphic □𝑖(𝑞′) and □𝑗(𝑝′), we obviously

have 𝑖 = 𝑗 since isomorphisms of augmentations preserve display

maps; and the isomorphism decomposes into 𝑞′ � 𝑝′ as required.



100 5 Augmentations are Normal Resource Terms

∥Γ ⊢Tm 𝜆𝑥.𝑠 : 𝐴→ 𝐵∥Tm
def

= Λ
Isog•
JΓK,J𝐴K,J𝐵K (∥Γ, 𝑥 : 𝐴 ⊢Tm 𝑠 : 𝐵∥Tm)

∥Γ ⊢Tm 𝑥 ®𝑡 : 𝛼∥Tm
def

= □𝑖(∥Γ ⊢Sq ®𝑡 :
®𝐴∥Sq)

∥Γ ⊢Bg [𝑠1 , . . . , 𝑠𝑛] : 𝐴∥Bg
def

= ΠIsog[ ∥Γ ⊢Tm 𝑠𝑖 : 𝐴∥Tm | 1 ≤ 𝑖 ≤ 𝑛 ]
∥Γ ⊢Sq ⟨𝑠1 , . . . , 𝑠𝑛⟩ :

®𝐴∥Sq
def

= ⟨ ∥Γ ⊢Bg 𝑠𝑖 : 𝐴𝑖∥Bg | 1 ≤ 𝑖 ≤ 𝑛 ⟩Isog

Figure 5.7: Isomorphism for normal forms of the resource calculus

Surjective. Any 𝑞 ∈ Isog•(G ⊢ o) has a unique initial move, which is

negative hence cannot be maximal by+-covered. By determinism, there

is a unique subsequent Player move, displayed to the initial move

of some A𝑖 . The subsequent moves directly inform 𝑞′ ∈ Aug(A ⊢ ®B⊗
𝑖
)

such that 𝑞 � □𝑖(𝑞′).

5.3.6 The isomorphism

Putting together the above results, we may now deduce:

Theorem 5.18 – Bĳection (for typed resource calculus)

For Γ a context and 𝐴 a type, there are bĳections:

∥ − ∥Tm : Tmnf(Γ;𝐴) � Isog•(JΓK ⊢ J𝐴K)
∥ − ∥Bg : Bgnf(Γ;𝐴) � Isog(JΓK ⊢ J𝐴K)
∥ − ∥Sq : Sqnf(Γ;

®𝐴) � Isog(JΓK ⊢ J ®𝐴K) .

Proof. The three functions are defined by mutual induction using

Propositions 5.10, 5.12, 5.15 and 5.17, as in Figure 5.7 (where the

index 𝑖 for the head variable case is the index of (𝑥 :
®𝐴→ 𝛼) in Γ).

Injectivity. Directly by induction on the syntax, using the injectivity

of each construction.

Surjectivity. By induction on the size (i. e. the number of events) of

augmentations, the syntactic kind (considering Tm < Bg < Sq), and

also the type 𝐴 in the Tm case:

▶ the decomposition provided by Proposition 5.17 yields aug-

mentations of strictly smaller size (we remove the two initial

moves);

▶ the bĳection of Proposition 5.15 preserves the size of augmen-

tations and stays in the kind Tm, but yields a smaller output

type;

▶ the remaining two decompositions do not increase the size

and yield a lower kind.

Hence we have an explicit bĳection ∥ − ∥Tm between normal resource

terms and isogmentations of PCG.

Example: Consider the following sequent:

𝑥 : 𝛼 ⊢Tm 𝜆𝑦.𝑦 [𝑥, 𝑥] [] : (𝛼→ (𝛼→ 𝛼) → 𝛼) → 𝛼



5.3 The isomorphism 101

with the typing derivation (setting Γ := 𝑥 : 𝛼, 𝑦 : 𝛼→ (𝛼→ 𝛼) → 𝛼):

(var)

Γ ⊢Tm 𝑥 : 𝛼
(var)

Γ ⊢Tm 𝑥 : 𝛼
(bag)

Γ ⊢Bg [𝑥, 𝑥] : 𝛼
(bag)

Γ ⊢Bg [] : 𝛼→ 𝛼
(seq)

Γ ⊢Sq ⟨[𝑥, 𝑥], []⟩ : ⟨𝛼, 𝛼→ 𝛼⟩
(var)

𝑥 : 𝛼, 𝑦 : 𝛼→ (𝛼→ 𝛼) → 𝛼 ⊢Tm 𝑦 [𝑥, 𝑥] [] : 𝛼
(abs)

𝑥 : 𝛼 ⊢Tm 𝜆𝑦.𝑦 [𝑥, 𝑥] [] : (𝛼→ (𝛼→ 𝛼) → 𝛼) → 𝛼

We construct its interpretation step-by-step.

Typing rule (var) with a head variable of type 𝛼. Since 𝑥 is applied to

an empty sequence, we are in a special case of 𝑖-lifting:

∥Γ ⊢Tm 𝑥 : 𝛼∥Tm =

o ⊗ o ⇒ (o ⇒ o) ⇒ o ⊢ o
q−

q+

Typing rules (bag). For the empty bag, we simply have:

∥Γ ⊢Bg [] : 𝛼→ 𝛼∥Bg = 0 ∈ Isog(JΓK ⊢ o⇒ o) .

For the other one, we have:

∥Γ ⊢Bg [𝑥, 𝑥] : 𝛼∥Tm =

o ⊗ o ⇒ (o ⇒ o) ⇒ o ⊢ o
q−

q+ q−

q+

Typing rule (seq). From the tupling isomorphism, we have

∥Γ ⊢Sq ⟨[𝑥, 𝑥], []⟩ : ⟨𝛼, 𝛼→ 𝛼⟩∥Sq

= ⟨ ∥Γ ⊢Bg [𝑥, 𝑥] : 𝛼∥Bg , ∥Γ ⊢Bg [] : 𝛼→ 𝛼∥Bg⟩Isog

which gives us the following isogmentation:

o ⊗ o ⇒ (o ⇒ o) ⇒ o ⊢ o ⊗ (o ⇒ o)
q−

q+ q−

q+

Typing rule (var). We lift the previous isogmentation:

∥Γ ⊢Tm 𝑦 [𝑥, 𝑥] [] : 𝛼∥Tm

= □2(∥Γ ⊢Sq ⟨[𝑥, 𝑥], []⟩ : ⟨𝛼, 𝛼→ 𝛼⟩∥Sq)



102 5 Augmentations are Normal Resource Terms

which gives us:

o ⊗ o ⇒ (o ⇒ o) ⇒ o ⊢ o
q−

q+

q−

q+ q−

q+

Typing rule (abs). Finally, we apply the currying isomorphism:

∥𝑥 : 𝛼 ⊢Tm 𝜆𝑦.𝑦 [𝑥, 𝑥] [] : (𝛼→ (𝛼→ 𝛼) → 𝛼) → 𝛼∥Tm

= Λ
Isog
o,o⇒(o⇒o)⇒o,o(∥Γ ⊢Tm 𝑦 [𝑥, 𝑥] [] : 𝛼∥Tm)

and we obtain:

o ⊢ (o ⇒ (o ⇒ o) ⇒ o) ⇒ o
q−

q+

q−

q+ q−

q+

5.4 Conclusion

Hence, we have a direct isomorphism between normal resource terms

and isogmentations. However, we can do better: in the next chapters,

we study the categorical structure of PCG, in order to extend this first

correspondence into a sound interpretation of resource terms in PCG.



o ⊗ o ⊢ o
𝑎− 𝑏−

𝑐+ 𝑑+

Figure 6.1: 𝑞 ∈ Aug(A ⊢ B),
with A = o ⊗ o and B = o.

o ⊢ (o ⇒ o ⇒ o) ⇒ o
1
−

2
+

3
−

4
−

5
+

6
+

Figure 6.2: 𝑝 ∈ Aug(B ⊢ C),
with B = o and C = (o⇒ o⇒ o) ⇒ o.

Remark: Up to isomorphism of augmen-

tations, we may consider

⟬𝑞⟭ = 𝑥𝑞↾A ⊢ 𝑥𝑞↾B ,

but we need not assume that.

Notation: we write 𝑥𝑞↾B �B 𝑥𝑝↾B for the

induced equivalence.

Composition and Categorical
Structure 6

6.1 Composition for augmen-
tations . . . . . . . . . . . 103

6.2 Strategies and identities 113
6.3 The categorical structure

of PCG . . . . . . . . . . . 116
6.4 PCG is a SMCC . . . . . 124
6.5 From qualitative PCG to

HO . . . . . . . . . . . . . 135
6.6 Conclusion and perspec-

tives . . . . . . . . . . . . 145

Now that we have established a first link between the resource calculus

and pointer concurrent games, we expand our game model with the

notion of composition. Indeed, one of the advantages of game semantics

is its compositional aspect, representing how programs interact which

each other.

Defining composition for augmentations is tricky, because both aug-

mentations need to agree on the events occurring in the shared arena

component; thus, Section 6.1 features a detailed presentation of the

construction. In doing so, we find out that the composition of two aug-

mentations must (in general) produce several augmentations – that is, we

need to consider sums of augmentations rather than single augmenta-

tions. This leads us to the definition of PCG strategies, which are sums of

augmentations (similar to how HO strategies are sets of plays). Section 6.2

defines strategies and in particular copycat strategies, which will be the

identity morphisms for PCG – the SMCC obtained with negative arenas

as objects and strategies as morphisms, presented in Section 6.4. Finally,

we show in Section 6.5 that our notion of composition is compatible with

the composition in HO games.

6.1 Composition for augmentations

In all this section, we fix A, B and C negative arenas. We start by defining

the composition of augmentations: how do two augmentations – say, the

ones from Figures 6.1 and 6.2 – interact with each other?

As for HO games, we first define the interaction of two augmentations,

then we hide the events occurring in the shared arena to obtain the

composition. However, because PCG augmentations are not linear, there

may be several ways to “match” events occurring in the shared arena

component – hence we need to first fix an isomorphism between those

events.

6.1.1 Interaction via an isomorphism

Consider two augmentations 𝑞 ∈ Aug(A ⊢ B) and 𝑝 ∈ Aug(B ⊢ C).
Inuitively, we can only compose 𝑞 and 𝑝 provided “they reach the

same state on B”, so we first extract the “state they reach” via their

desequentializations: let us write |𝑥𝑞↾A| for the events of 𝑞 that display

to A and |𝑥𝑞↾B| for those that display to B – these inform 𝑥𝑞↾A ∈ Conf(A)
and 𝑥𝑞↾B ∈ Conf(B) and likewise for 𝑝.

But what does it mean to “reach the same state”? In general requiring

𝑥𝑞↾B = 𝑥𝑝↾B is meaningless, since this data should really be considered

up to isomorphism. States in B are not configurations, but positions –

symmetry classes of configurations. Thus 𝑞 and 𝑝 are compatible if 𝑥𝑞↾B
and 𝑥𝑝↾B are symmetric, i.e. if there is a symmetry 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.



104 6 Composition and Categorical Structure

For instance, in Figures 6.1 and 6.2, we have

|𝑥B↾𝑞| = {𝑎, 𝑏} and |𝑥B↾𝑞| = {5, 6},

where all four events maps to the same arena move q− (the only move of

the singleton arena B = o). Hence, we have two symmetries:

𝜑 = {(𝑎 ↦→ 5), (𝑏 ↦→ 6)} and 𝜓 = {(𝑎 ↦→ 6), (𝑏 ↦→ 5)} .

Composing 𝑞 and 𝑝 means constructing an augmentation on A ⊢ C,

resulting from the interaction of 𝑞 and 𝑝. However, the behavior of this

interaction depends on the choice of symmetry – actually, we shall see

that different symmetries may lead to different augmentations! Hence,

we start by defining the interaction of two compatible augmentations

along with a mediating symmetry.

Definition 6.1 – Interaction via a symmetry

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C) and 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.

The interaction 𝑝 ⊛𝜑 𝑞 is the pair ⟨|𝑝 ⊛𝜑 𝑞|,≤𝑝⊛𝜑𝑞⟩ with:

▶ the set |𝑝 ⊛𝜑 𝑞|
def

= |𝑞| + |𝑝|,
▶ the binary relation ≤𝑝⊛𝜑𝑞 on |𝑝⊛𝜑 𝑞| defined as the transitive

closure of ▷
def

= ▷𝑞 ∪ ▷𝑝 ∪ ▷𝜑,

with

▷𝑞 = {((1, 𝑒), (1, 𝑓 )) | 𝑒 <𝑞 𝑓 } ,
▷𝑝 = {((2, 𝑒), (2, 𝑓 )) | 𝑒 <𝑝 𝑓 } ,
▷𝜑 = {((1, 𝑒), (2, 𝜑(𝑒))) | 𝑒 ∈ |𝑥𝑞↾B| ∧ pol𝐴⊢𝐵(𝜕𝑞(𝑒)) = +}

∪ {((2, 𝑒), (1, 𝜑−1(𝑒))) | 𝑒 ∈ |𝑥𝑝↾B| ∧ pol𝐵⊢𝐶(𝜕𝑝(𝑒)) = +} .

For instance, we can construct 𝑝 ⊛𝜑 𝑞 with the augmentations and

symmetry from above:

(2, 1−)
(2, 2+)

(2, 3−) (2, 4−)

(2, 5+) (2, 6+)

(1, 𝑎−) (1, 𝑏−)

(1, 𝑐+) (1, 𝑑+)

▷𝑝▷𝑝

▷𝑝▷𝑝

▷𝑝▷𝜑

▷𝜑▷𝑞

▷𝑞

events from 𝑞 events from 𝑝

Figure 6.3: 𝑝 ⊛𝜑 𝑞, where we annotate each immediate causality arrow with the relation it comes from (between ▷𝑞 , ▷𝑝 and ▷𝜑).



6.1 Composition for augmentations 105

Remark: for 𝑒 ∈ |𝑝 ⊛𝜑 𝑞|, then 𝑒 occurs
in A if and only if it has form (1, 𝑒′)
with 𝜕𝑞(𝑒′) = (1, a); and 𝑒 occurs in C
if and only if it has form (2, 𝑒′) with

𝜕𝑝(𝑒′) = (2, c). Otherwise, it occurs in B.

[12]: Castellan and Clairambault (2021),

Disentangling Parallelism and Interference
in Game Semantics

Reminder:
minimality-respecting:

𝑒 ∈ min(≤⟬𝑞⟭) ⇔ 𝜕𝑞(𝑒) ∈ min(≤A⊢B) ;

rule-abidingness:

if 𝑎 ≤⟬𝑞⟭ 𝑏, then 𝑎 ≤𝑞 𝑏;

courtesy:(
𝑒+ _𝑞 𝑓 or 𝑒 _𝑞 𝑓

−) ⇒ 𝑒 _⟬𝑞⟭ 𝑓 .

Now, before going any further, we need to check that ▷ is acyclic:

remember that we want to hide events of the interaction occurring in B to

obtain an augmentation on A ⊢ C, with a partial order.

Proof sketch: We start by proving that if ▷ has a cycle, then it has a

cycle occurring entirely in B (Lemma 6.2), without minimal events in

B (Lemma 6.4). Focusing on such a cycle, we exhibit a contradiction in

Lemma 6.6. The proof is a direct adaptation of a similar fact in concurrent

games on event structures [12, Lemma 7.6].

Lemma 6.2 – A cycle must occur in B

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C) and 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.

If ▷ has a cycle in 𝑝 ⊛𝜑 𝑞, then it has a cycle entirely in B.

Proof. First, observe that ▷ has no direct link between A and C.

Consider a cycle

𝑒1 ▷ . . . ▷ 𝑒𝑛 ▷ 𝑒1 .

Note that this cycle must pass through B; otherwise, it is entirely in

A or entirely in C, making ▷𝑞 or ▷𝑝 cyclic, contradiction.

Notation: We write 𝑒A
(resp. 𝑒B

, 𝑒C
) if

the event 𝑒 occurs in A (resp. B, C).

Now, consider a section

𝑒B
𝑖 ▷ 𝑒A

𝑖+1
▷ . . . 𝑒A

𝑗 ▷ 𝑒B
𝑗+1

with the segment 𝑒𝑖+1 ▷ . . . ▷ 𝑒 𝑗 entirely in A. By definition, we

must have

𝑒B
𝑖 ▷𝑞 𝑒A

𝑖+1
▷𝑞 . . . ▷𝑞 𝑒A

𝑗 ▷𝑞 𝑒
B
𝑗+1
,

so that 𝑒B
𝑖
▷𝑞 𝑒B

𝑗+1
by transitivity of ▷𝑞 . Hence, a segment of the

cycle in A may be removed, preserving the cycle. Symmetrically, any

segment in C may be removed, yielding a cycle within B.

Hence, we restrict our attention to cycles entirely within B. Given

𝑒1 ▷ . . . ▷ 𝑒𝑛 ▷ 𝑒1

a cycle, we call 𝑛 its length. We show that this cycle can also be assumed

not to contain any element minimal in B.

First, remark that if 𝑒 is minimal in B, then any event greater than 𝑒 for

the causal order is also greater for the static order.

Lemma 6.3 – Minimality in B

Consider 𝑞 ∈ Aug(A ⊢ B) and 𝑒 , 𝑒′ ∈ |𝑞| such that 𝑒 <𝑞 𝑒′, with 𝑒′

occurring in B and 𝜕𝑞(𝑒)minimal in B. Then, 𝑒 <⟬𝑞⟭ 𝑒
′
.

Proof. Since ⟬𝑞⟭ is a forest, there is a unique 𝑓 ≤⟬𝑞⟭ 𝑒′ such that 𝑓

is minimal for≤⟬𝑞⟭. By minimality-respecting of ⟬𝑞⟭, 𝜕𝑞( 𝑓 ) is minimal

in A ⊢ B. By construction, 𝑓 must occur in B, so by negativity of B, 𝑓

is negative. Hence by rule-abidingness and courtesy of 𝑞, 𝑓 is minimal

for ≤𝑞 . Since 𝑞 is a forest, it follows that 𝑓 = 𝑒.



106 6 Composition and Categorical Structure

Exploiting that, we prove that if a cycle exists, then there is a cycle without

any minimal event in B.

Lemma 6.4 – Cycle without minimal event

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C) and 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.

If ▷ has a cycle, then it has one entirely in B and without minimal

event in B.

Proof. By Lemma 6.2, assume the cycle is entirely in B.

Consider a cycle

𝑒1 ▷ . . . ▷ 𝑒𝑛 ▷ 𝑒1

entirely in B of minimal length. Seeking a contradiction, consider 𝑒𝑖
minimal in B. Assume first it is in Br. Since B is negative, we cannot

have 𝑒𝑖−1 ▷𝜑 𝑒𝑖 . Hence, if 𝑒𝑖+1 is also in Br, we have

𝑒𝑖−1 ▷𝑝 𝑒𝑖 ▷𝑝 𝑒𝑖+1

so 𝑒𝑖−1 ▷𝑝 𝑒𝑖+1, shortening the cycle and contradicting its minimality.

So 𝑒𝑖+1 is in Bl. But then 𝑒𝑖 ▷𝜑 𝑒𝑖+1, and 𝑒𝑖 is in Br, so we have

𝑒𝑖 = (2, 𝑓𝑖)with polB⊢C(𝜕𝑝( 𝑓𝑖)) = +. Hence 𝑒𝑖 ▷𝜑 𝑒𝑖+1 implies 𝑒𝑖+1 =

(1, 𝜑−1( 𝑓𝑖). As an isomorphism of configurations, 𝜑 preserves the

display to B, so 𝑒𝑖+1 is minimal in Bl.

In all cases, the cycle contains a minimal element of Bl. Call it 𝑒𝑖 ,

then

𝑒𝑖 ▷𝑞 𝑒𝑖+1 ▷𝑞 . . . ▷𝑞 𝑒 𝑗 ▷𝜑 𝑒 𝑗+1

where all relations in between 𝑒𝑖 and 𝑒 𝑗 are in ▷𝑞 (by definition, only

those can apply until we jump to Br via▷𝜑), and where by definition,

𝜑(𝑒 𝑗) = 𝑒 𝑗+1. By transitivity, 𝑒𝑖 ▷𝑞 𝑒 𝑗 . But by Lemma 6.3, this entails

𝑒𝑖 <⟬𝑝⊛𝜑𝑞⟭ 𝑒 𝑗 . Now as 𝜑 is an isomorphism of configurations, this

implies 𝜑(𝑒𝑖) <⟬𝑝⊛𝜑𝑞⟭ 𝜑(𝑒 𝑗), hence 𝑒𝑖−1 <⟬𝑝⊛𝜑𝑞⟭ 𝑒 𝑗+1. By rule-abiding,

this entails 𝑒𝑖−1 ▷𝑝 𝑒 𝑗+1. But this means that the segment 𝑒𝑖 . . . 𝑒 𝑗
may be removed from the cycle, contradicting the minimality of the

later.

Notation: if 𝑒 occurs in B, we say it occurs
in Bl if it has the form (1, 𝑒′) for 𝑒′ ∈ |𝑞|,
and occurs in 𝐵r otherwise.

Notation: We define ≤⟬𝑝⊛𝜑 𝑞⟭ with

(1, 𝑒) ≤⟬𝑝⊛𝜑 𝑞⟭ (1, 𝑓 ) iff 𝑒 ≤⟬𝑞⟭ 𝑓 ,
(2, 𝑒) ≤⟬𝑝⊛𝜑 𝑞⟭ (2, 𝑓 ) iff 𝑒 ≤⟬𝑝⟭ 𝑓 .

So we focus on cycles entirely in B, comprising no minimal event.

Notation: If 𝑒 ∈ |𝑝 ⊛𝜑 𝑞| is not minimal in ⟬𝑝 ⊛𝜑 𝑞⟭, it has a unique

predecessor in ⟬𝑝 ⊛𝜑 𝑞⟭ called its justifier and written just(𝑒).

Considering whether an event occurs in Bl or in Br is not precise enough:

we also need to consider its polarity, since ▷𝜑 is defined taking into

account both the arena side and the polarity of events.

Notation: We say 𝑒 occurring in B has polarity l if it has the form (1, 𝑒′)
with polA⊢B(𝜕𝑞(𝑒′)) = +, has polarity r if it has the form (2, 𝑒′) with

polB⊢C(𝜕𝑝(𝑒′)) = +, and has polarity 𝜑 otherwise. We may then write 𝑒l,

𝑒r or 𝑒𝜑 instead of 𝑒, depending on its polarity.



6.1 Composition for augmentations 107

Lemma 6.5 – Deadlock-free auxiliary lemma

We have the following properties:

(1) if 𝑒 ▷𝑞 𝑓 𝜑, then 𝑒 ▷∗𝑞 just( 𝑓 ),
(2) if 𝑒 ▷𝑝 𝑓 𝜑, then 𝑒 ▷∗𝑝 just( 𝑓 ),

where the events are annotated with their assumed polarity.

Proof. (1) We must have 𝑒 = (1, 𝑒′) and 𝑓 = (1, 𝑓 ′) with 𝑒′ <𝑞 𝑓 ′,
with 𝑓 ′ negative. By rule-abiding and courtesy, just( 𝑓 ′)_𝑞 𝑓

′
. Since

𝑞 is a forest, 𝑒′ ≤𝑞 just( 𝑓 ′).
(2) Symmetric.

Notation: For any 𝑒 ∈ |𝑝 ⊛𝜑 𝑞|, its depth, written depth(𝑒), is 0 if 𝑒 is

minimal in ⟬𝑝 ⊛𝜑 𝑞⟭, otherwise depth(just(𝑒)) + 1.

We finally prove the deadlock-free lemma:

Lemma 6.6 – Deadlock-free lemma

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C) and 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.

Then ▷ is acyclic.

Proof. Seeking a contradiction, assume there is a cycle. By Lemma

6.4 it is entirely in B, without a minimal event in B. Writing it

𝜌 = 𝑒1 ▷ . . . ▷ 𝑒𝑛 ▷ 𝑒1, its depth is

depth(𝜌) =
𝑛∑
𝑖=1

depth(𝑒𝑖) ,

and w.l.o.g. assume 𝜌 minimal for the product order on pairs (𝑛, 𝑑)
where 𝑑 = depth(𝜌) and 𝑛 is its length. We notice that 𝜌 has no

consecutive ▷𝑞 or ▷𝑝 – or we shorten the cycle by transitivity,

breaking minimality. It also has no consecutive ▷𝜑 by definition.

This entails that 𝑛 = 4𝑘, with w.l.o.g.

𝑒4𝑖 ▷𝑞 𝑒4𝑖+1 ▷𝜑 𝑒4𝑖+2 ▷𝑝 𝑒4𝑖+3 ▷𝜑 𝑒4𝑖+4 .

Then for all 𝑖, 𝑒4𝑖+1 has polarity l. Otherwise, it has polarity 𝜑,

making 𝑒4𝑖+1 ▷𝜑 𝑒4𝑖+2 impossible. Likewise, 𝑒4𝑖+3 has polarity r,

while 𝑒4𝑖+2 and 𝑒4𝑖+4 have polarity 𝜑.

We claim just(𝑒4𝑖+1) ▷𝑞 just(𝑒4𝑖). Indeed just(𝑒4𝑖+1)_⟬𝑝⊛𝜑𝑞⟭ 𝑒4𝑖+1 by

definition; and by rule-abiding this entails that just(𝑒4𝑖+1) ▷𝑞 𝑒4𝑖+1.

Since 𝑞 is a forest, that makes just(𝑒4𝑖+1) comparable with 𝑒4𝑖 for ▷∗𝑞 .
If just(𝑒4𝑖+1) = 𝑒4𝑖 , then

𝑒4𝑖−1 ▷𝑝 𝑒4𝑖+2

since 𝜑 is a symmetry and by rule-abiding – but this allows us to

shorten the cycle, contradicting its minimality.



108 6 Composition and Categorical Structure

Likewise, if 𝑒4𝑖 ▷𝑞 just(𝑒4𝑖+1), then

𝑒4𝑖 ▷𝑞 just(just(𝑒4𝑖+1))

by Lemma 6.5 – we cannot have an equality as they have distinct

polarities. But then

𝑒4𝑖 ▷𝑞 just(just(𝑒4𝑖+1)) ▷𝑞 just(just(𝑒4𝑖+2)) ▷𝑝 𝑒4𝑖+3

yielding a cycle with the same length but strictly smaller depth,

absurd. The last case remaining has just(𝑒4𝑖+1) ▷𝑞 𝑒4𝑖 , but so

just(𝑒4𝑖+1) ▷𝑞 just(𝑒4𝑖) by Lemma 6.5 (again, the equality is im-

possible for polarity reasons).

With the same reasoning, just(𝑒4𝑖+3) ▷𝑝 just(𝑒4𝑖+2); and just(𝑒4𝑖+2) ▷𝜑

just(𝑒4𝑖+1) and just(𝑒4𝑖+4) ▷𝜑 just(𝑒4𝑖+3) by definition. So we can

replace the whole cycle with

just(𝑒4𝑖+4) ▷𝜑 just(𝑒4𝑖+3) ▷𝑝 just(𝑒4𝑖+2) ▷𝜑 just(𝑒4𝑖+1) ▷𝑞 just(𝑒4𝑖)

reversing directions, with the same length but strictly smaller depth,

contradiction.

Since ▷ is acyclic, the binary relation ≤𝑝⊛𝜑𝑞 also is acyclic – which will

allow us to extract an augmentation 𝑟 ∈ Aug(A ⊢ C) with a partial order

≤𝑟 from 𝑝 ⊛𝜑 𝑞.

Proposition 6.7 – Interaction is acyclic

The interaction 𝑝 ⊛𝜑 𝑞 is a partially ordered set.

Proof. By Lemma 6.6, ▷ is acyclic. Therefore, its transitive closure

is a partial order.

6.1.2 Composition via an isomorphism

Now, we define the composition: as in HO games, we hide the events

occurring in B and only keep events occurring in A and C.

Definition 6.8 – Composition via an isomorphism

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C) and 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.

The composition of 𝑞 with 𝑝 according to 𝜑, noted 𝑝 ⊙𝜑 𝑞, is the

tuple ⟨|𝑝 ⊙𝜑 𝑞|,≤⟬𝑝⊙𝜑𝑞⟭ ,≤𝑝⊙𝜑𝑞 , 𝜕𝑝⊙𝜑𝑞⟩ defined with:

|𝑝 ⊙𝜑 𝑞| = |𝑥𝑞↾A| + |𝑥𝑝↾C|
≤⟬𝑝⊙𝜑𝑞⟭ = ≤𝑥𝑞↾A⊢𝑥𝑝↾C

𝑒 ≤𝑝⊙𝜑𝑞 𝑓 iff 𝑒 ≤𝑝⊛𝜑𝑞 𝑓

𝜕𝑝⊙𝜑𝑞 : (1, 𝑒) ↦→ 𝜕𝑞((1, 𝑒))
(2, 𝑒) ↦→ 𝜕𝑝((2, 𝑒))



6.1 Composition for augmentations 109

o ⊗ o ⊢ (o ⇒ o ⇒ o) ⇒ o

(2, 1)−
(2, 2)+

(2, 3)− (2, 4)−

(1, 𝑐)+ (1, 𝑑)+

Figure 6.4: Composition 𝑝 ⊙𝜑 𝑞

o ⊗ o ⊢ o
𝑎− 𝑏−

𝑐+ 𝑑+

Figure 6.1: 𝑞 ∈ Aug(A ⊢ B),
with A = o ⊗ o and B = o.

o ⊢ (o ⇒ o ⇒ o) ⇒ o
1
−

2
+

3
−

4
−

5
+

6
+

Figure 6.2: 𝑝 ∈ Aug(B ⊢ C),
with B = o and C = (o⇒ o⇒ o) ⇒ o.

Example: Recall the augmentations from Figures 6.1 and 6.2, with the

isomorphism

𝜑 = {(𝑎 ↦→ 5), (𝑏 ↦→ 6)} .

The composition 𝑝 ⊙𝜑 𝑞 is represented in Figure 6.4.

In order to show that this composition is well-behaved, we need to

characterise immediate causal dependency in the interaction. It turns out

that this is very constrained – this is detailed in two lemmas: the first, for

forward causality, follows.

Lemma 6.9 – Forward causality

If 𝑒 = (1, 𝑒′)_𝑝⊛𝜑𝑞 𝑓 for 𝑒′ ∈ |𝑞|, then we have:

(1) If 𝑒′ is negative in 𝑞, then 𝑓 = (1, 𝑓 ′) and 𝑒′ _𝑞 𝑓
′
;

(2) If 𝑒′ is positive in 𝑞 and occurs in A,

then 𝑓 = (1, 𝑓 ′) and 𝑒′ _𝑞 𝑓
′
;

(3) If 𝑒′ is positive in 𝑞 and occurs in B, then 𝑓 = (2, 𝜑(𝑒′)),

and symmetrically for 𝑒 = (2, 𝑒′)_𝑝⊛𝜑𝑞 𝑓 for 𝑒′ ∈ |𝑝|.

Proof. Any immediate causal link must originate from one of the

clauses of the relation ▷ above.

For (1), for polarity reasons it can only be (1, 𝑒) ▷𝑞 𝑓 ′ so that

𝑓 ′ = (1, 𝑓 )with 𝑒 <𝑞 𝑓 , and furthermore we must have 𝑒 _𝑞 𝑓 or

that would immediately contradict 𝑒 _𝑝⊛𝜑𝑞 𝑓 .

For (2), similarly only the clause ▷𝑞 may apply.

For (3), we must show that 𝑒 ▷𝑞 𝑓 is impossible. If that was the case,

then 𝑓 = (1, 𝑓 ′) with 𝑒′ <𝑞 𝑓 ′, where we must have 𝑒′ _𝑞 𝑓
′

(or

contradict 𝑒 _ 𝑓 ). But as 𝑒′ is positive, by courtesy we have 𝑒′ _⟬𝑞⟭ 𝑓
′
,

and thus 𝜑(𝑒′)_⟬𝑝⟭ 𝜑( 𝑓 ′) as 𝜑 is an order-isomorphism. And by

rule-abiding, that entails 𝜑(𝑒′) <𝑝 𝜑( 𝑓 ′), so that altogether we have

𝑒 ▷𝜑 (2, 𝜑(𝑒′)) ▷𝑝 (2, 𝜑( 𝑓 ′)) ▷𝜑 𝑓

contradicting the fact that 𝑒 ≤𝑝⊛𝜑𝑞 𝑓 .

Symmetrically, in the “backward” direction, we have:



110 6 Composition and Categorical Structure

Lemma 6.10 – Backward causality

If 𝑒 _𝑝⊛𝜑𝑞 (1, 𝑓 ′) = 𝑓 for 𝑓 ′ ∈ |𝑞|, then we have:

(1) If 𝑓 ′ is positive in 𝑞, then 𝑒 = (1, 𝑒′) and 𝑒′ _𝑞 𝑓
′
;

(2) If 𝑓 ′ is negative in 𝑞 and occurs in A,

then 𝑒 = (1, 𝑒′) and 𝑒′ _𝑞 𝑓
′
;

(3) If 𝑓 ′ is negative in 𝑞 and occurs in B, then 𝑒 = (1, 𝜑−1(𝑒′)),

and symmetrically for 𝑒 _𝑝⊛𝜑𝑞 (2, 𝑓 ′) for 𝑓 ′ ∈ |𝑝|.

Proof. Analogous to the proof of lemma 6.9.

We can now prove that the composition is an augmentation.

Proposition 6.11 – Composition via an isomorphism

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C) and 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.

Then the composition 𝑝 ⊙𝜑 𝑞 is an augmentation on A ⊢ C.

Proof. Let us call an event 𝑒 ∈ |𝑝 ⊛𝜑 𝑞| visible if it appears in

𝑝 ⊙𝜑 𝑞, hidden otherwise. For brevity, we write 𝑟 = 𝑝 ⊙𝜑 𝑞 and

𝑟 = 𝑝 ⊛𝜑 𝑞.

First, we check that ⟬𝑟⟭ = ⟨|𝑟|,≤⟬𝑟⟭ , 𝜕𝑟⟩ is a configuration. This is

clear by construction:

⟬𝑟⟭ = 𝑥𝑞↾A ⊢ 𝑥𝑝↾C ∈ Conf(A ⊢ B) .

Then, we check that 𝑟 is an augmentation.

Forestiality. An event 𝑒 ∈ |𝑟| has at most one causal predecessor,

by Lemma 6.10; and ≤𝑟 is acyclic by Proposition 6.7.

Rule-abidingness. Immediate from the definition and the fact that 𝑞

and 𝑝 are rule-abiding.

Courtesy. Consider 𝑒 _𝑟 𝑓 : this implies a sequence

𝑒 _𝑟 𝑒1 _𝑟 . . . _𝑟 𝑒𝑘 _𝑟 𝑓

in 𝑟, where 𝑒1 , . . . , 𝑒𝑘 are hidden.

If 𝑒 is positive, then 𝑒1 cannot be hidden by Lemma 6.9, so 𝑘 = 0

and 𝑒 _𝑟 𝑓 . As both 𝑒 and 𝑓 are visible, this is only possible if they

both come from 𝑞 or they both come from 𝑝. In any case, 𝑒 _⟬𝑟⟭ 𝑓

by courtesy of 𝑞 or 𝑝.

Likewise, if 𝑓 is negative, we use Lemma 6.10 to show that 𝑒 _⟬𝑟⟭ 𝑓 .

Determinism. Since 𝑞 and 𝑝 are deterministic, and ▷𝜑 does not

branch, Lemma 6.9 entails that ≤𝑟 can only branch at negative

visible events, from which it follows that 𝑟 is deterministic.

Negativity. An event minimal in 𝑝 ⊙𝜑 𝑞 must come from 𝑝, must

occur in C hence be visible, and be minimal in 𝑝, hence negative.



6.1 Composition for augmentations 111

+-coveredness. Immediate from the definition and the fact that 𝑞

and 𝑝 are +-covered.

Moreover, this operation preserves isomorphisms. First, remark that for

any augmentations 𝑞, 𝑝 ∈ Aug(A ⊢ B)with an isomorphism 𝜑 : 𝑞 � 𝑝, we

know that 𝜑 also is a configuration isomorphism and 𝜑 : ⟬𝑞⟭ � ⟬𝑝⟭. We

note 𝜑A (resp. 𝜑B) the restriction of 𝜑 to the events occuring in A (resp.

B) – which is well-defined by arena-preservation of 𝜑. Then:

𝜑A : 𝑥𝑞↾A �A 𝑥𝑝↾A and 𝜑B : 𝑥𝑞↾B �B 𝑥𝑝↾B .

Lemma 6.12 – Composition preserves isomorphism

Consider 𝑞, 𝑞′ ∈ Aug(A ⊢ B) and 𝑝, 𝑝′ ∈ Aug(B ⊢ C), with the

augmentation isomorphisms :

𝜑 : 𝑞 � 𝑞′ and 𝜓 : 𝑝 � 𝑝′ ,

and the configuration isomorphisms :

𝜃 : 𝑥𝑞↾B �B 𝑥𝑝↾B and 𝜃′ : 𝑥𝑞′↾B �B 𝑥𝑝′↾B ,

such that the diagram of Figure 6.5 commutes.

Then, we have an augmentation isomorphism:

𝜓 ⊙𝜃,𝜃′ 𝜑 : 𝑝 ⊙𝜃 𝑞 � 𝑝′ ⊙𝜃′ 𝑞′ .

𝑥𝑞↾B 𝑥𝑞′↾B

𝑥𝑝↾B 𝑥𝑝′↾B

𝜑B

𝜃

𝜓B

𝜃′

Figure 6.5: CongruenceProof. We set the bĳection

𝜓 ⊛𝜃,𝜃′ 𝜑 : |𝑝 ⊛𝜃 𝑝| � |𝑝′ ⊛𝜃′ 𝑞
′|

(1, 𝑒) ↦→ (1, 𝜑(𝑒))
(2, 𝑓 ) ↦→ (2,𝜓( 𝑓 ))

which sends ▷𝑞 to ▷𝑞′ and ▷𝑝 to ▷𝑝′ by definition of 𝜑 and 𝜓.

Likewise, it sends ▷𝜃 to ▷𝜃′ by hypothesis (Figure 6.5). Clearly, the

symmetric statement holds for the inverse.

Therefore, it is clear that 𝜓 ⊛𝜃,𝜃′ 𝜑 restricts to

𝜓 ⊙𝜃,𝜃′ 𝜑 : 𝑝 ⊙𝜃 𝑞 � 𝑝′ ⊙𝜃′ 𝑞′

as required.

This allows us to extend the definition of composition to isogmentations:

for any q ∈ Aug(A ⊢ B) and p ∈ Aug(B ⊢ C), if 𝜑 : 𝑥q↾B �B 𝑥p↾B, we

define

p ⊙𝜑 q def

= q ⊙𝜑 p .

For now the choice of representatives still matters because of 𝜑, but we

shall see in the next section that we can actually define a composition

of isogmentations which does not depend on the representatives, by

summing over all symmetries.



112 6 Composition and Categorical Structure

o ⊗ o ⊢ (o⇒ o ⇒ o)⇒ o
1
−

2
+

3
−

4
−

𝑑+

𝑐+

Figure 6.7: 𝑝 ⊙𝜓 𝑞 (where we dropped

the tags from events’ names for the sake

of brevity).

6.1.3 Composing isogmentations

We now have a definition of composition of augmentations according to an
isomorphism – but what about composition of augmentations/isogmentations
in general? Indeed, the composition of 𝑞 and 𝑝 is only defined once we

have fixed a mediating 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B, which is not necessarily unique.

Worse, the result of composition depends on the choice of 𝜑: if Figure 6.3

was constructed with the symmetry 𝜓 = {(𝑎 ↦→ 6), (𝑏 ↦→ 5)}, we would

get the alternative interaction of Figure 6.6.

(2, 1−)
(2, 2+)

(2, 3−) (2, 4−)

(2, 5+) (2, 6+)

(1, 𝑎−) (1, 𝑏−)

(1, 𝑐+) (1, 𝑑+)

▷𝑝▷𝑝

▷𝑝▷𝑝

▷𝑝
▷𝜓

▷𝜓
▷𝑞

▷𝑞

Figure 6.6: 𝑝 ⊛𝜓 𝑞, where we label each immediate causality arrow with the relation it comes from (between ▷𝑞 , ▷𝑝 and ▷𝜓).

The corresponding augmentation 𝑝 ⊙𝜓 𝑞 is shown in Figure 6.7; the two

augmentations 𝑝 ⊙𝜑 𝑞 and 𝑝 ⊙𝜓 𝑞 are clearly different – worse, they are

not even isomorphic!

This is reminiscent of the behaviour of resource substitution. Consider

for example the term

𝑀 = 𝜆 𝑓 . 𝑓 [𝑥][𝑥] .

The substitution 𝑀⟨[𝑦, 𝑧]/𝑥⟩ yields two different resource terms:(
𝜆 𝑓 . 𝑓 [𝑥][𝑥]

)
⟨[𝑦, 𝑧]/𝑥⟩ = 𝜆 𝑓 . 𝑓 [𝑦] [𝑧] + 𝜆 𝑓 . 𝑓 [𝑧] [𝑦] ,

which is analogous to how the composition of 𝑞 and 𝑝 yields two different,

non-isomorphic augmentations. As substitution of resource terms yields

sums of resource terms, this suggests that composition of isogmentations

should produce sums of isogmentations.

Definition 6.13 – Composition of isogmentations

Consider q ∈ Isog(A ⊢ B) and p ∈ Isog(B ⊢ C).
Their composition p ⊙ q is defined as:

p ⊙ q def

=
∑

𝜑 : 𝑥q↾B�B𝑥p↾B

p ⊙𝜑 q .

For this definition to make sense, we want the composition to be com-

patible with isomorphisms, so that the isogmentations obtained by the

composition do not depend on the choice of representatives.



6.2 Strategies and identities 113

Lemma 6.14 – Composition does not depend on representatives

Consider q ∈ Isog(A ⊢ B) and p ∈ Isog(B ⊢ C).
For any 𝑞 ∈ q and 𝑝 ∈ p, we have:

p ⊙ q =
∑

𝜃 : 𝑥𝑞↾B�B𝑥𝑝↾B

𝑝 ⊙𝜃 𝑞 .

Proof. Fix any isomorphisms 𝜑 : q � 𝑞 and 𝜓 : p � 𝑝, projected to

𝜑B : 𝑥q↾B �B 𝑥𝑞↾B and 𝜓B : 𝑥p↾B �B 𝑥𝑝↾B .

Writing [𝑥𝑞↾B �B 𝑥𝑝↾B] for the set of isomorphisms 𝜃 : 𝑥𝑞↾B �B 𝑥𝑝↾B,

we define the bĳection:

Ω : [𝑥q↾B �B 𝑥p↾B] � [𝑥𝑞↾B �B 𝑥𝑝↾B]
𝜃 ↦→ 𝜓B ◦ 𝜃 ◦ 𝜑−1

B
.

Then, for any 𝜃 : 𝑥q↾B �B 𝑥p↾B, we can apply Lemma 6.12 (the

diagram of Figure 6.5 commutes by definition of Ω) to obtain

p ⊙𝜃 q � 𝑝 ⊙Ω(𝜃) 𝑞 . (6.1)

Now, we calculate:

p ⊙ q =
∑

𝜃 : 𝑥q↾B�B𝑥p↾B p ⊙𝜃 q (Definition 6.13)

=
∑

𝜃 : 𝑥q↾B�B𝑥p↾B 𝑝 ⊙Ω(𝜃) 𝑞 (Equation 6.1)

=
∑

𝜃′ : 𝑥𝑞↾B�B𝑥𝑝↾B 𝑝 ⊙𝜃′ 𝑞 (Ω is a bĳection)

as required.

This allows us to define, in general, the composition of two augmentations

𝑞 ∈ Aug(A ⊢ B) and 𝑝 ∈ Aug(B ⊢ C) as:

𝑝 ⊙ 𝑞 def

= 𝑞 ⊙ 𝑝 =
∑

𝜃 : 𝑥𝑞↾B�B𝑥𝑝↾B

𝑝 ⊙𝜃 𝑞 (6.2)

and we shall often use this equation to move between augmentations

and isogmentations – remark that the composition of augmentations is

always a sum of isogmentations.

6.2 Strategies and identities

6.2.1 Strategies

Recall that in HO games, strategies are sets of plays – similarly, in PCG
strategies are weighted sums of isogmentations.

Definition 6.15 – Strategy

A strategy on arena A is a function 𝜎 : Isog(A) → ℝ+, where ℝ+ is

the completed half-line of non-negative reals. We then write 𝜎 : A.



114 6 Composition and Categorical Structure

Remark: An isogmentation q ∈ Isog(A)
may be considered as a strategy, with

coefficient 1 for q and 0 for any other

isogmentation.

o ⇒ o

𝑎−

𝑏+

Figure 6.8: A configuration 𝑥 ∈ Conf(A),
with A = o⇒ o.

o ⇒ o ⊢ o ⇒ o

(2, 𝑎)−
(1, 𝑎)+

(1, 𝑏)−

(2, 𝑏)+

Figure 6.9: The augmentation 𝑐𝑐𝑥 .

We regard 𝜎 : A as a weighted sum

𝜎 =
∑

q∈Isog(A)
𝜎(q) · q ,

and we write supp(𝜎) for its support set:

supp(𝜎) def

= {q ∈ Isog(A) | 𝜎(q) ≠ 0} .

We can lift the composition of isogmentations to strategies.

Definition 6.16 – Composition of strategies

Consider 𝜎 : A ⊢ B and 𝜏 : B ⊢ C.

Their composition 𝜏 ⊙ 𝜎 : A ⊢ C is defined via the formula:

𝜏 ⊙ 𝜎
def

=
∑

q∈Isog(A⊢B)

∑
p∈Isog(B⊢C)

𝜎(q)𝜏(p) · (p ⊙ q) .

In other words, the coefficient (𝜏 ⊙ 𝜎)(r) is the sum of 𝜎(q) × 𝜏(p) over

all triples q, p, 𝜑 such that r = p ⊙𝜑 q – there are no convergence issues,

as we consider positive coefficients and we have been careful to include

+∞ ∈ ℝ+ in Definition 6.15.

We have now defined strategies from A to B, as well as a composition

on strategies: we show in Section 6.4 that PCG, the structure formed by

negative arenas and strategies between them, is a category.

6.2.2 Identities

But first, we focus on some key strategies: copycat strategies, formal sums

of specific isogmentations presenting typical copycat behaviour, which

will act as identities in PCG.

We start by defining their concrete representatives.

Definition 6.17 – Copycat augmentation on 𝑥

Consider 𝑥 ∈ Conf(A) on negative arena A. The augmentation

𝑐𝑐𝑥 ∈ Aug(A ⊢ A), called the copycat augmentation on 𝑥, is defined

with

▶ ⟬𝑐𝑐𝑥⟭
def

= 𝑥 ⊢ 𝑥,

▶ the causal order ≤𝑐𝑐𝑥 is the transitive closure of ≤𝑥⊢𝑥 aug-

mented with:

(1, 𝑒) _𝑐𝑐𝑥 (2, 𝑓 ) if 𝑒 ≤𝑥 𝑓 and polA(𝜕𝑥(𝑒)) = +,

(2, 𝑒) _𝑐𝑐𝑥 (1, 𝑓 ) if 𝑒 ≤𝑥 𝑓 and polA(𝜕𝑥(𝑒)) = −.

In other words, 𝑐𝑐𝑥 adds to 𝑥 ⊢ 𝑥 all immediate causal links of the

form (2, 𝑒) _ (1, 𝑒) for negative 𝑒, and (1, 𝑒) _ (2, 𝑒) for positive 𝑒.

Consider for instance the configuration 𝑥 from Figure 6.8; the copycat

augmentation on 𝑥 is presented in Figure 6.9.



6.2 Strategies and identities 115

This lifts to isogmentations.

Definition 6.18 – Copycat isogmentation on x

Consider x ∈ Pos(A). The copycat isogmentation on x, noted

ccx ∈ Isog(A ⊢ A), is defined by:

ccx
def

= 𝑐𝑐x .

Again, for this definition to make sense, we want the copycat isogmenta-

tion not to depend on the choice of representatives.

Lemma 6.19 – Copycat preserves isomorphisms

Consider 𝑥, 𝑦 ∈ Conf(A). Then,

𝑥 �A 𝑦 iff 𝑐𝑐𝑥 � 𝑐𝑐𝑦 .

Proof. Only if. Consider 𝜃 : 𝑥 �A 𝑦, then

𝜑𝜃 : 𝑐𝑐𝑥 � 𝑐𝑐𝑦
(𝑖 , 𝑒) ↦→ (𝑖 , 𝜃(𝑒))

is an augmentation isomorphism.

If. Likewise, if 𝜑 : 𝑐𝑐𝑥 � 𝑐𝑐𝑦 , then

𝜃𝜑 : 𝑥 �A 𝑦

𝑒 ↦→ 𝑓 such that 𝜑((1, 𝑒)) = (1, 𝑓 )

is a configuration isomorphism.

Now, we can define our identity strategies: sums of copycat isogmentation

on all positions of an arena. But with which coefficients? Since we want

to obtain identities, we need to choose coefficients which exactly cancel

the sum over all symmetries in the composition (Definition 6.16).

Definition 6.20 – Copycat strategy

The copycat strategy on the arena A, noted idA : A ⊢ A, is

idA
def

=
∑

x∈Pos(A)

1

♯Sym (x) · ccx ,

where Sym (x) is the group of endosymmetries of x, i. e. of all

symmetries 𝜃 : x �A x – remark that ♯Sym (x) the cardinality of

Sym (x) does not depend on the choice of the representative x

This use of such a coefficient to compensate for future sums over sets of

permutations is reminiscent of the Taylor expansion of 𝜆-terms.



116 6 Composition and Categorical Structure

6.3 The categorical structure of PCG

We finally have all the ingredients needed to build a category:

▶ negative arenas (objects),

▶ strategies between them (morphisms),

▶ composition,

▶ and identities.

Categorical laws will be proven in several stages. First, we establish iso-

morphisms corresponding to them, working concretely on augmentations

– this means that these laws will refer to certain isomorphisms explicitly.

Then, we use the compatibility of composition of augmentations with

isomorphisms to transport these laws to isogmentations.

6.3.1 Associativity of the composition

To prove that the composition is associative, we define a ternary composi-

tion and prove that the composition of three morphisms (using the binary

composition twice) is equal to their ternary composition, no matter the

order of the compositions.

First, we define ternary interactions.

Definition 6.21 – Ternary interaction

Consider 𝑞1 ∈ Aug(A ⊢ B), 𝑞2 ∈ Aug(B ⊢ C) and 𝑞3 ∈ Aug(C ⊢ D),
with configuration isomorphisms:

𝜑 : 𝑥𝑞1↾B �B 𝑥𝑞2↾B and 𝜓 : 𝑥𝑞2↾C �C 𝑥𝑞3↾C .

We define the ternary interaction 𝑞3 ⊛3

𝜓 𝑞2 ⊛3

𝜑 𝑞1 with:

|𝑞3 ⊛3

𝜓 𝑞2 ⊛3

𝜑 𝑞1|
def

= |𝑞1| + |𝑞2| + |𝑞3| ,
◁3

𝑞𝑖

def

= {((𝑖 , 𝑒), (𝑖 , 𝑒′)) | 𝑒 <𝑞𝑖 𝑒′} for 𝑖 = 1, 2, 3 ,

◁3

𝜑
def

= {((1, 𝑒), (2, 𝜑(𝑒))) | polA⊢B(𝜕𝑞1
((1, 𝑒))) = +}

∪ {((2, 𝜑(𝑒)), (1, 𝑒)) | polA⊢B(𝜕𝑞1
((1, 𝑒))) = −} ,

◁3

𝜓
def

= {((2, 𝑒), (3,𝜓(𝑒))) | polB⊢C(𝜕𝑞2
((2, 𝑒))) = +}

∪ {((3,𝜓(𝑒)), (2, 𝑒)) | polB⊢C(𝜕𝑞2
((2, 𝑒))) = −} ,

◁𝑞3⊛3

𝜓𝑞2⊛3

𝜑𝑞1

def

= ◁3

𝑞1

∪ ◁3

𝑞2

∪ ◁3

𝑞3

∪ ◁3

𝜑 ∪ ◁3

𝜓 .



6.3 The categorical structure of PCG 117

Remark: For now we do not claim that

𝑟 ⊙3

𝜓 𝑝 ⊙
3

𝜑 𝑞 is an augmentation. In par-

ticular we did not prove the acyclicity

of ◁
𝑟⊛3

𝜓𝑝⊛
3

𝜑 𝑞
, thus we do not know if

≤
𝑟⊙3

𝜓𝑝⊙
3

𝜑 𝑞
is antisymmetric. However the

proof of Proposition 6.25 does not rely

on this; the antisymmetry of ≤
𝑟⊙3

𝜓𝑝⊙
3

𝜑 𝑞

will actually be a consequence of the

isomorphism between 𝑟 ⊙3

𝜓 𝑝 ⊙
3

𝜑 𝑞 and(
𝑟 ⊙𝜓 𝑝

)
⊙ℓ◦𝜑 𝑞.

This allows us to define ternary compositions.

Definition 6.22 – Ternary composition

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C), 𝑟 ∈ Aug(C ⊢ D), with

configuration isomorphisms 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B and 𝜓 : 𝑥𝑝↾C �C 𝑥𝑟↾C.

We define their ternary composition 𝑟 ⊙3

𝜓 𝑝 ⊙3

𝜑 𝑞 with

|𝑟 ⊙3

𝜓 𝑝 ⊙3

𝜑 𝑞|
def

= |𝑥𝑞↾A| + ∅ + |𝑥𝑟↾D|
(1, 𝑒) ≤⟬𝑟⊙3

𝜓𝑝⊙
3

𝜑𝑞⟭ (1, 𝑓 ) iff 𝑒 ≤𝑥𝑞↾A 𝑓

(3, 𝑒) ≤⟬𝑟⊙3

𝜓𝑝⊙
3

𝜑𝑞⟭ (3, 𝑓 ) iff 𝑒 ≤𝑥𝑝↾C 𝑓

(𝑖 , 𝑒) ≤𝑟⊙3

𝜓𝑝⊙
3

𝜑𝑞
(𝑗 , 𝑓 ) iff (𝑖 , 𝑒)

(
◁𝑟⊛3

𝜓𝑝⊛
3

𝜑𝑞

)∗
(𝑗 , 𝑓 )

𝜕𝑟⊙3

𝜓𝑝⊙
3

𝜑𝑞
: (1, 𝑒) ↦→ (1, 𝜕𝑥𝑞↾A (𝑒))
(3, 𝑒) ↦→ (2, 𝜕𝑥𝑟↾D(𝑒)) .

We want to prove the following claim:

𝑟 ⊙𝜓◦𝓇−1

(
𝑝 ⊙𝜑 𝑞

)
� 𝑟 ⊙3

𝜓 𝑝 ⊙3

𝜑 𝑞 �
(
𝑟 ⊙𝜓 𝑝

)
⊙ℓ◦𝜑 𝑞 (6.3)

for 𝑞, 𝑝, 𝑟, 𝜑,𝜓 as in the definition above, and the bĳections

ℓ : 𝑒 ↦→ (1, 𝑒) and 𝓇 : 𝑒 ↦→ (2, 𝑒) .

First, we need some lemmas on relations:

Lemma 6.23 – Relations on disjoint sets

If ◀ is a relation on A ⊎ B two disjoint sets, then the following are

equivalent:

(1) ∀b1 , b2 ∈ B and a1 , . . . a𝑛 ∈ A,
if b1 ◀ a1 ◀ . . . ◀ a𝑛 ◀ b2 ,

then ∃ b′
1
, . . . , b′

𝑘
∈ B such that b1 ◀ b′

1
◀ . . . ◀ b′

𝑘
◀ b2 ;

(2) ◀∗ ↾B = (◀ ↾B)∗ .

Lemma 6.24 – Star of two relations

If ◀1 ,◀2 are relations on A, then

(◀1 ⊎ ◀∗
2
)∗ = (◀1 ⊎ ◀2)∗ .

Now, we can go back to Equation (6.3).

Proposition 6.25 – Composition is associative

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C), 𝑟 ∈ Aug(C ⊢ D), with

configuration isomorphisms 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B and 𝜓 : 𝑥𝑝↾C �C 𝑥𝑟↾C.

Reminder: 𝓇 and ℓ are the bĳections

ℓ : 𝑒 ↦→ (1, 𝑒) and 𝓇 : 𝑒 ↦→ (2, 𝑒).Then we have:(
𝑟 ⊙𝜓 𝑝

)
⊙ℓ◦𝜑 𝑞 � 𝑟 ⊙𝜓◦𝓇−1

(
𝑝 ⊙𝜑 𝑞

)
.



118 6 Composition and Categorical Structure

Proof. By definition of the composition, it is clear that

ℓ ◦ 𝜑 : 𝑥𝑞↾B �B 𝑥(𝑟⊙𝜓𝑝)↾B and 𝜓 ◦ 𝓇−1

: 𝑥(𝑝◦𝜑𝑞)↾C �C 𝑥𝑟↾C ;

indeed, composition preserves the underlying configuration struc-

ture and only adds tags to events.

To prove that the two augmentations are isomorphic, we actually

prove that each is isomorphic to the ternary composition 𝑟⊙3

𝜓 𝑝⊙3

𝜑 𝑞.

We start by proving that(
𝑟 ⊙𝜓 𝑝

)
⊙ℓ◦𝜑 𝑞 � 𝑟 ⊙3

𝜓 𝑝 ⊙3

𝜑 𝑞 .

The two sets of events of both augmentations
1

1: we have not proved yet that the object

𝑟⊙3

𝜓 𝑝⊙
3

𝜑 𝑞 is an augmentation, but it will

be a consequence of the isomorphism.

differ only by the

tags, so we set 𝜒 with

∀𝑒 ∈ |
(
𝑟 ⊙𝜓 𝑝

)
⊙ℓ◦𝜑 𝑞| , 𝜒(𝑒) =

{
(1, 𝑒′) if 𝑒 = (1, 𝑒′)
(3, 𝑒′) if 𝑒 = (2, (2, 𝑒′))

and we have 𝜒 : |
(
𝑟 ⊙𝜓 𝑝

)
⊙ℓ◦𝜑 𝑞| � |𝑟 ⊙3

𝜓 𝑝 ⊙3

𝜑 𝑞|.
We now prove that 𝜒 is an isomorphism of augmentations.

Arena-preserving. We easily check that

𝜕(𝑟⊙𝜓𝑝) ⊙ℓ◦𝜑𝑞 = 𝜕𝑟⊙3

𝜓𝑝⊙
3

𝜑𝑞
◦ 𝜒 .

Configuration. By definition of the composition, we have:

≤⟬(𝑟⊙𝜓𝑝)⊙ℓ◦𝜑𝑞⟭ = ≤𝑥𝑞↾A + ≤𝑥𝑟⊙𝜓 𝑝↾D

= ≤𝑥𝑞↾A +
(
∅ + ≤𝑥𝑟↾D

)
.

Writing 𝜒(◀) for {(𝜒(𝑎), 𝜒(𝑏)) | 𝑎 ◀ 𝑏} for any relation ◀, we obtain:

𝜒
(
≤⟬(𝑟⊙𝜓𝑝)⊙ℓ◦𝜑𝑞⟭

)
= 𝜒

(
≤𝑥𝑞↾A +

(
∅ + ≤𝑥𝑟↾D

) )
= ≤⟬𝑟⊙3

𝜓𝑝⊙
3

𝜑𝑞⟭ .

Causality. By definition, we have:

≤(𝑟⊙𝜓𝑝)⊙ℓ◦𝜑𝑞 =
(
◁𝑞 ⊎ ◁𝑟⊙𝜓𝑝 ⊎ ◁ℓ◦𝜑

)∗
↾

(
|𝑥𝑞↾A| + |𝑥𝑟⊙𝜓𝑝↾D|

)
.

For any 𝑖 ∈ ℕ, set 𝐸 and relation ◀, we note (𝑖 , 𝐸) = {(𝑖 , 𝑒) | 𝑒 ∈ 𝐸}
and (𝑖 ,◀) = {((𝑖 , 𝑒1), (𝑖 , 𝑒2)) | 𝑒1 ◀ 𝑒2}. Then, by definition again:

◁𝑟⊙𝜓𝑝 = (2,≤𝑟⊙𝜓𝑝)
=

(
(2,◁𝑝) ⊎ (2,◁𝑟) ⊎ (2,◁𝜓)

)∗ ↾ (2, (1, |𝑥𝑝↾B|)) ⊎ (2, (2, |𝑥𝑟↾D|)) .

Now, since ◁𝑟⊙𝜓𝑝 is defined on (2, |𝑟 ⊙𝜓 𝑝|), i.e. on (2, (1, |𝑝|)) and

(2, (2, |𝑟|)), we can add:

◁𝑟⊙𝜓𝑝 =
(
(2,◁𝑝) ⊎ (2,◁𝑟) ⊎ (2,◁𝜓)

)∗
↾

(
(2, (1, |𝑥𝑝↾B|)) ⊎ (2, (2, |𝑥𝑟↾D|)) ⊎ (1, |𝑞|)

)
.



6.3 The categorical structure of PCG 119

Moreover, ◁𝑞 is defined on (1, |𝑞|), and ◁𝜑 on (1, |𝑥𝑞↾B|) and on

(2, |(𝑟 ⊙𝜓 𝑝)B|) = (2, (1, |𝑥𝑝↾B|)). So we can also write

◁𝑞 ⊎ ◁ℓ◦𝜑
=

(
◁𝑞 ⊎ ◁ℓ◦𝜑

)
↾

(
(2, (1, |𝑥𝑝↾B|)) ⊎ (2, (2, |𝑥𝑟↾D|)) ⊎ (1, |𝑞|)

)
.

Putting both equalities together, we obtain

≤(𝑟⊙𝜓𝑝)⊙ℓ◦𝜑𝑞 =
( (
◁𝑞 ⊎

(
(2,◁𝑝) ⊎ (2,◁𝑟) ⊎ (2,◁𝜓)

)∗ ⊎ ◁ℓ◦𝜑
)

↾
(
(2, (1, |𝑥𝑝↾B|)) ⊎ (2, (2, |𝑥𝑟↾D|)) ⊎ (1, |𝑞|)

) )∗
↾ (1, |𝑥𝑞↾A|) ⊎ (2, (2, |𝑥𝑟↾D|)) .

For the sake of readability, we write:

𝐸 = (2, (1, |𝑥𝑝↾C|)) ⊎ (2, (2, |𝑥𝑟↾C|)) ,
𝐹 = (2, (1, |𝑥𝑝↾B|)) ⊎ (2, (2, |𝑥𝑟↾D|)) ⊎ (1, |𝑞|) ,
⋖ =

(
◁𝑞 ⊎

(
(2,◁𝑝) ⊎ (2,◁𝑟) ⊎ (2,◁𝜓)

)∗ ⊎ ◁ℓ◦𝜑
)

Then ⋖ is defined on 𝐸 ⊎ 𝐹, and we can apply Lemma 6.23. Indeed,

for any chain

𝑓1 ⋖ 𝑒1 ⋖ 𝑒2 ⋖ . . . ⋖ 𝑒𝑛 ⋖ 𝑓2

with 𝑓1 , 𝑓2 ∈ 𝐹 and ∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑒𝑖 ∈ 𝐸, we know that all links must

come from

(
(2,◁𝑝) ⊎ (2,◁𝑟) ⊎ (2,◁𝜓)

)∗
(because ◁𝑞 and ◁ℓ◦𝜑 are

only defined on 𝐹); so we also have 𝑓1 ⋖ 𝑓2. So, using Lemma 6.23,

we write:

≤(𝑟⊙𝜓𝑝)⊙ℓ◦𝜑𝑞 =
(
◁𝑞 ⊎

(
(2,◁𝑝) ⊎ (2,◁𝑟) ⊎ (2,◁𝜓)

)∗ ⊎ ◁ℓ◦𝜑
)∗

↾
(
(1, |𝑥𝑞↾A|) ⊎ (2, (2, |𝑥𝑟↾D|))

)
.

By Lemma 6.24, we obtain

≤(𝑟⊙𝜓𝑝)⊙ℓ◦𝜑𝑞 =
(
◁𝑞 ⊎(2,◁𝑝) ⊎ (2,◁𝑟) ⊎ (2,◁𝜓)⊎ ◁ℓ◦𝜑

)∗
↾

(
(1, |𝑥𝑞↾A|) ⊎ (2, (2, |𝑥𝑟↾D|))

)
.

We can extend 𝜒 to an isomorphism 𝜒′ : |𝑞|+(|𝑝|+|𝑟|) � |𝑟⊛3

𝜓𝑝⊛
3

𝜑 𝑞|
with

∀𝑒 ∈ |𝑞| + (|𝑝| + |𝑟|), 𝜒′(𝑒) =

(1, 𝑒′) if 𝑒 = (1, 𝑒′)
(2, 𝑒′) if 𝑒 = (2, (1, 𝑒′))
(3, 𝑒′) if 𝑒 = (2, (2, 𝑒′))

.

Then it is clear that ≤(𝑟⊙𝜓𝑝)⊙ℓ◦𝜑𝑞 and ≤𝑟⊙3

𝜓𝑝⊙
3

𝜑𝑞
are isomorphic via 𝜒,

concluding the first part of the proof.

Likewise, we prove 𝑟 ⊙𝜓◦𝓇−1

(
𝑝 ⊙𝜑 𝑞

)
� 𝑟 ⊙3

𝜓 𝑝 ⊙3

𝜑 𝑞.

Hence,

(
𝑟 ⊙𝜓 𝑝

)
⊙ℓ◦𝜑 𝑞 � 𝑟 ⊙𝜓◦𝓇−1

(
𝑝 ⊙𝜑 𝑞

)
.



120 6 Composition and Categorical Structure

This means that the composition on isogmentations is associative.

Lemma 6.26 – Associativity for isogmentations

Consider q ∈ Isog(A ⊢ B), p ∈ Isog(B ⊢ C) and r ∈ Isog(C ⊢ D).
Then,

(r ⊙ p) ⊙ q = r ⊙ (p ⊙ q) .

Proof. We compute:

(r ⊙ p) ⊙ q =
©­«

∑
𝜃 : 𝑥p↾C�C𝑥r↾C

r ⊙𝜃 pª®¬ ⊙ q

=
∑

𝜃 : 𝑥
p
C�C𝑥

r
C

(
(r ⊙𝜃 p) ⊙ q

)
=

∑
𝜃 : 𝑥p↾C�C𝑥r↾C

(
(r ⊙𝜃 p) ⊙ q

)
=

∑
𝜃 : 𝑥p↾C�C𝑥r↾C

( ∑
𝜑 : 𝑥q↾B�Bℓ (𝑥p↾B)

(
(r ⊙𝜃 p) ⊙𝜑 q

) )
=

∑
𝜃 : 𝑥p↾C�𝐶𝑥r↾C

( ∑
𝜑 : 𝑥q↾B�B𝑥p↾B

(
(r ⊙𝜃 p) ⊙ℓ◦𝜑 q

) )
=

∑
𝜃 : 𝑥p↾C�𝐶𝑥r↾C

( ∑
𝜑 : 𝑥q↾B�B𝑥p↾B

(
r ⊙𝜃◦𝓇−1 (p ⊙𝜑 q)

) )
Lemmas and proposition used:
– 6.14: composition does not depend on

the choice of representatives;

– 3.12: for any isogmentation q, (q) � q;

– 6.25: associativity of composition of

augmentations.

using the definition of composition of isogmentations; the definition

of composition of strategies; Lemma 3.12 with Lemma 6.14; the

definition of composition of augmentations; a direct substitution;

and Proposition 6.25.

We then perfom the same steps in reverse order to obtain:∑
𝜃 : 𝑥p↾C�𝐶𝑥r↾C

( ∑
𝜑 : 𝑥q↾B�B𝑥p↾B

(
r ⊙𝜃◦𝓇−1 (p ⊙𝜑 q)

) )
= r ⊙ (p ⊙ q) .

Thus, we have the associativity of composition for strategies.

Proposition 6.27 – Associativity for strategies

Consider 𝜎 : A ⊢ B, 𝜏 : B ⊢ C and 𝛿 : C ⊢ D strategies. Then,

𝛿 ⊙ (𝜏 ⊙ 𝜎) = (𝛿 ⊙ 𝜏) ⊙ 𝜎 .

Proof. Direct by bilinearity of composition and Lemma 6.26.

6.3.2 Neutrality of copycat

Again, we start with results on augmentations, before moving on to

isogmentations and strategies.



6.3 The categorical structure of PCG 121

Reminder: Configurations preserves
causality, meaning the order on 𝑥 follows

the order on A; and arenas are alternating,

meaning that an event and its imediate

successor cannot have the same polarity.

First, we characterize causal links from negative events to positive events

in copycat augmentations.

Lemma 6.28 – Causal links in copycat

Consider 𝑥 ∈ Conf(A), and 𝑒− , 𝑓 + ∈ |𝑐𝑐𝑥| such that 𝑒− _𝑐𝑐𝑥 𝑓
+
.

Then there are two cases:

(1) 𝑒 = (1, 𝑎), 𝑓 = (2, 𝑎), and pol𝑥(𝑎) = +,

(2) 𝑒 = (2, 𝑎), 𝑓 = (1, 𝑎), and pol𝑥(𝑎) = −.

Proof. If 𝑒 = (1, 𝑎) then for any 𝑎+ _𝑥 𝑏
−

we have

(1, 𝑎) ≤𝑐𝑐𝑥 (2, 𝑎) ≤𝑐𝑐𝑥 (2, 𝑏) ≤𝑐𝑐𝑥 (1, 𝑏) .

Likewise, if 𝑒 = (2, 𝑎) then for any 𝑎− _𝑥 𝑏
+

we have

(2, 𝑎) ≤𝑐𝑐𝑥 (1, 𝑎) ≤𝑐𝑐𝑥 (1, 𝑏) ≤𝑐𝑐𝑥 (2, 𝑏) .

These are the only causal links that will concern us in the proof of

neutrality; indeed, the following lemma expresses the fact that in any

proof of isomorphism between two augmentations, if we already know

their underlying configurations are isomorphic, then we only have to

check the links from negative to positive events.

Lemma 6.29 – Isomorphic underlying configurations

Consider two augmentations 𝑞, 𝑝 in any arena D.

If there exists a configuration isomorphism 𝜑 : ⟬𝑞⟭ �D ⟬𝑝⟭, then

for any 𝑒+ , 𝑓 − ∈ |𝑞|,

𝑒+ _𝑞 𝑓
− ⇔ 𝜑(𝑒)+ _𝑝 𝜑( 𝑓 )− .

Proof. By courtesy and rule-abidingness, 𝑒+ _𝑞 𝑓
−

if and only if

𝑒+ _⟬𝑞⟭ 𝑓
−
. Likewise, 𝜑(𝑒)+ _𝑝 𝜑( 𝑓 )− if and only if 𝜑(𝑒)+ _⟬𝑝⟭

𝜑( 𝑓 )−. Finally, since 𝜑 is a configuration isomorphism, 𝑒+ _⟬𝑞⟭ 𝑓
−

if and only if 𝜑(𝑒)+ _⟬𝑝⟭ 𝜑( 𝑓 )−.

We can now prove the neutrality of copycat.

Lemma 6.30 – Neutrality of copycat

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑥 ∈ Conf(B) and 𝜑 : 𝑥𝑞↾B �B 𝑥. Then,

𝑐𝑐𝑥 ⊙ℓ◦𝜑 𝑞 � 𝑞 .

Likewise, for 𝑦 ∈ Conf(A) and 𝜓 : 𝑦 �A 𝑥𝑞↾A, we have:

𝑞 ⊙𝜓◦𝓇−1 𝑐𝑐𝑦 � 𝑞



122 6 Composition and Categorical Structure

Proof. We have |𝑐𝑐𝑥 ⊙𝜑 𝑞| = |𝑥𝑞↾A| + (∅ + |𝑥|). Consider:

𝜒 : |𝑞| → |𝑐𝑐𝑥 ⊙ℓ◦𝜑 𝑞|

𝑒 ↦→
{
(1, 𝑒) if 𝑒 ∈ |𝑥𝑞↾A|
(2, (2, 𝜑(𝑒))) if 𝑒 ∈ |𝑥𝑞↾B|.

We prove that 𝜒 is an isomorphism of augmentions.

Arena-preverving. Clear by definition.

Configuration-preserving. Since 𝜑 preserves the configuration order,

we have:

𝜒
(
≤⟬𝑞⟭

)
= ≤𝑥𝑞↾A + ( ∅ + ≤𝑥) = ≤⟬𝑐𝑐𝑥⊙ℓ◦𝜑𝑞⟭ .

Causality-preserving. For the sake of brevity, we write _⊛ for

_𝑐𝑐𝑥⊛ℓ◦𝜑𝑞 and _⊙ for _𝑐𝑐𝑥⊙ℓ◦𝜑𝑞 . By Lemma 6.29, we only need to

look at links from negative to positive moves.

Consider 𝑒− _𝑞 𝑓
+
. Then we have four possibilities:

(1) If 𝑒 , 𝑓 ∈ |𝑥𝑞↾A|.
Then 𝜒(𝑒) = (1, 𝑒)− and 𝜒( 𝑓 ) = (1, 𝑓 )+. By Lemma 6.9,

(1, 𝑒)− _⊛ (1, 𝑓 )+ .

Hence 𝜒(𝑒)_⊙ 𝜒( 𝑓 ).

(2) If 𝑒 ∈ |𝑥𝑞↾A| and 𝑓 ∈ |𝑥𝑞↾B|.
Then 𝜒(𝑒) = (1, 𝑒)− and 𝜒( 𝑓 ) = (2, (2, 𝜑( 𝑓 )))+. We have:

(1, 𝑒)− _⊛ (1, 𝑓 )_⊛ (2, (1, 𝜑( 𝑓 )))_⊛ (2, (2, 𝜑( 𝑓 )))+

by Lemmas 6.9 and 6.28. Moreover, (1, 𝑓 ) and (2, (1, 𝜑( 𝑓 )))
occur in B, so after the hiding we have 𝜒(𝑒)_⊙ 𝜒( 𝑓 ).

(3) If 𝑒 ∈ |𝑥𝑞↾B| and 𝑓 ∈ |𝑥𝑞↾A|.
Then 𝜒(𝑒) = (2, (2, 𝜑(𝑒)))− and 𝜒( 𝑓 ) = (1, 𝑓 )+. We have:

(2, (2, 𝜑(𝑒)))− _⊛ (2, (1, 𝜑(𝑒)))_⊛ (1, 𝑒)_⊛ (1, 𝑓 )+

by Lemmas 6.9 and 6.28. Moreover, (2, (1, 𝜑(𝑒))) and (1, 𝑒)
occur in B, so after the hiding we have 𝜒(𝑒)_⊙ 𝜒( 𝑓 ).

(4) If 𝑒 , 𝑓 ∈ |𝑥𝑞↾B|.
Then 𝜒(𝑒) = (2, (2, 𝜑(𝑒)))− and 𝜒( 𝑓 ) = (2, (2, 𝜑( 𝑓 )))+. By

Lemmas 6.9 and 6.28, we have:

(2, (2, 𝜑(𝑒)))− _⊛ (2, (1, 𝜑(𝑒)))_⊛ (1, 𝑒)
_⊛ (1, 𝑓 )_⊛ (2, (1, 𝜑( 𝑓 )))_⊛ (2, (2, 𝜑( 𝑓 )))+ .

Again, (2, (1, 𝜑(𝑒))), (1, 𝑒), (1, 𝑓 ) and (2, (1, 𝜑( 𝑓 ))) occur in B,

so after the hiding we obtain 𝜒(𝑒)_⊙ 𝜒( 𝑓 ).

Symmetrically, if 𝑒− _⊙ 𝑓 +, then 𝜒−1(𝑒)_𝑞 𝜒−1( 𝑓 ).
The proof for the other isomorphism is similar.



6.3 The categorical structure of PCG 123

It may be surprising that 𝑐𝑐𝑥 ⊙ℓ◦𝜑 𝑞 � 𝑞 regardless of 𝜑: the choice of the

symmetry is reflected in the isomorphism 𝜒𝜑 : 𝑐𝑐𝑥 ⊙ℓ◦𝜑 𝑞 � 𝑞 obtained,

which the statement of this lemma ignores.

Again, this result on augmentations extends nicely to the composition

with the copycat strategy.

Proposition 6.31 – Neutrality of id

Consider 𝜎 : A ⊢ B. Then, idB ⊙ 𝜎 = 𝜎 ⊙ idA = 𝜎.

Proof. We focus on idB ⊙ 𝜎. First, we have:

idB ⊙ 𝜎

=

( ∑
x∈Pos(B)

1

♯Sym (x) · ccx

)
⊙

( ∑
q∈Isog+(𝐴⊢𝐵)

𝜎(q) · q
)

=
∑

x∈Pos(B)

∑
q∈Isog+(𝐴⊢𝐵)

𝜎(q)
♯Sym (x) · (ccx ⊙ q)

=
∑

x∈Pos(B)

∑
q∈Isog+(A⊢B)

𝜎(q)
♯Sym (x) ·

(
ccx ⊙ q

)
=

∑
x∈Pos(B)

∑
q∈Isog+(A⊢B)

𝜎(q)
♯Sym (x) ·

(
(ccx) ⊙ q

)
=

∑
x∈Pos(B)

∑
q∈Isog+(A⊢B)

𝜎(q)
♯Sym (x) ·

(
ccx ⊙ q

)
=

∑
x∈Pos(B)

∑
q∈Isog+(A⊢B)

∑
𝜃 : 𝑥q↾B�Bx

𝜎(q)
♯Sym (x) ·

(
ccx ⊙ℓ◦𝜃 q

)
=

∑
x∈Pos(B)

∑
q∈Isog+(A⊢B)

∑
𝜃 : 𝑥q↾B�Bx

𝜎(q)
♯Sym (x) ·

(
q
)

=
∑

x∈Pos(B)

∑
q∈Isog+(A⊢B)

∑
𝜃 : 𝑥q↾B�Bx

𝜎(q)
♯Sym (x) · q

=
∑

x∈Pos(B)

∑
q∈Isog+(A⊢B)
s.t. 𝑥q↾B�Bx

∑
𝜃 : 𝑥q↾B�Bx

𝜎(q)
♯Sym

(
𝑥q↾B

) · q
=

∑
q∈Isog+(A⊢B)

∑
𝜃∈Sym

(
𝑥q↾B

) 𝜎(q)
♯Sym

(
𝑥q↾B

) · q
=

∑
q∈Isog+(A⊢B)

𝜎(q) · q

= 𝜎

Lemmas used:
– 3.12: representatives and isomorphism

classes;

– 6.30: neutrality of copycat for augmen-

tations.

by unfolding the definition of the identity strategy (6.20); unfolding

the definition of the composition of strategies (6.16); definition of

the copycat isogmentation (6.18); Equation (6.2) and Lemma 3.12;

Equation (6.2) and Lemma 3.12 again; definition of the composition

of augmentations (Eq (6.2)) and of the copycat augmentation (6.17);

Lemma 6.30; Lemma 3.12; Lemma 3.12 again; and a direct reasoning

on symmetries.

The proof of the identity 𝜎 ⊙ idA = 𝜎 is symmetric.



124 6 Composition and Categorical Structure

Notice how the sum over all symmetries exactly compensates for the

coefficient in Definition 6.20!

All in all, we obtain a category PCG.

Theorem 6.32 – PCG is a category

PCG is a category defined with:

▶ the objects are negative arenas,

▶ for any arenas A, B, the morphisms from A to B are the

strategies on A ⊢ B,

▶ the composition is given by Definition 6.16,

▶ for any arena A, the identity is idA.

Proof. Composition is associative by Proposition 6.27 and identities

are neutral by Proposition 6.31.

6.4 PCG is a SMCC

Now, we prove that PCG has a symmetric monoidal structure (see

Definitions 1.1 and 1.2).

6.4.1 Tensor

We already defined the tensor of arenas (Definition 2.4) and of configura-

tions (Definition 5.6). We now extend this construction to augmentations,

then isogmentations, and finally strategies.

Definition 6.33 – Tensor of augmentations

Consider 𝑞1 ∈ Aug(A1 ⊢ B1) and 𝑞2 ∈ Aug(A2 ⊢ B2).
Their tensor is the augmentation 𝑞1⊗ 𝑞2 ∈ Aug((A1⊗A2) ⊢ (B1⊗B2))
defined with:

⟬𝑞1 ⊗ 𝑞2⟭ =
(
𝑥𝑞1↾A1

⊗ 𝑥𝑞2↾A2

)
⊢

(
𝑥𝑞1↾B1

⊗ 𝑥𝑞2↾B2

)
and

(𝑘, (𝑖 , 𝑒)) ≤𝑞1⊗𝑞2
(𝑙 , (𝑖 , 𝑓 )) ⇔ 𝑒 ≤𝑞𝑖 𝑓 .

This construction clearly preserves isomorphisms, hence it lifts to isog-

mentations using any representative. For definition, we take:

q1 ⊗ q2

def

= q1 ⊗ q2 ∈ Isog(A1 ⊗ A2 ⊢ B1 ⊗ B2)

for any isogmentations q1 ∈ Isog(A1 ⊢ B1) and q2 ∈ Isog(A2 ⊢ B2).



6.4 PCG is a SMCC 125

Finally, we lift the definition to strategies.

Definition 6.34 – Tensor of strategies

Consider 𝜎1 : A1 ⊢ B1 and 𝜎2 : A2 ⊢ B2.

Their tensor, noted 𝜎1 ⊗ 𝜎2 : (A1 ⊗ A2) ⊢ (B1 ⊗ B2), is the strategy

defined with:

𝜎1 ⊗ 𝜎2

def

=
∑

q1∈Isog(A1⊢B1)

∑
q2∈Isog(A2⊢B2)

𝜎1(q1) 𝜎2(q2) · (q1 ⊗ q2) .

We now prove that this construction is a functor⊗ : PCG×PCG→ PCG.

Indeed, we have the following lemmas regarding tensor:

Proof idea: Consider 𝑥1 , 𝑦1 ∈ Conf(A1)
and 𝑥2 , 𝑦2 ∈ Conf(A2), with a bĳection

𝜑 : 𝑥1 ⊗ 𝑥2 � 𝑦1 ⊗ 𝑦2 .

We decompose 𝜑 in two isos 𝜑1 , 𝜑2 with:

𝜑𝑖 : |𝑥𝑖 | → |𝑦𝑖 |
𝑒 ↦→ 𝑓 s.t. 𝜑((𝑖 , 𝑒)) = ((𝑖 , 𝑓 )) .

Lemma 6.35 – Tensor and positions

Consider two arenas A1 and A2. Then:

Pos(A1 ⊗ A2) � Pos(A1) × Pos(A2) .

Moreover, for any x1 ∈ Pos(A1) and x2 ∈ Pos(A2), we have:

Sym (x1 ⊗ x2) � Sym (x1) × Sym (x2) .

Lemma 6.36 – Tensor and copycat augmentation

Consider 𝑥1 ∈ Conf(A1), 𝑥2 ∈ Conf(A2). Then:

𝑐𝑐𝑥1⊗𝑥2
� 𝑐𝑐𝑥1

⊗ 𝑐𝑐𝑥2
.

Copycat forces both side of the augmentation to be copies of the same

configuration, meaning that any copycat isogmentation (on A ⊢ A) can be

characterized simply by a position on A.

Lemma 6.37 – Support of identity

Consider an arena A, then

supp(idA) � Pos(A) .

Proof idea: We set a bĳection

𝜅 : x ∈ Pos(A) ↦→ 𝑐𝑐x ∈ supp(idA) .

These lemmas allow us to prove that the tensor respects identities.

Proof idea: Similar to the proof of Propo-

sition 6.31, using the previous lemmas.

Lemma 6.38 – Tensor and identities

Consider A, B arenas. Then,

idA ⊗ idB = idA⊗B .

Proof. We have the following equalities:

idA ⊗ idB =
∑

q∈Isog(A⊢A)

∑
p∈Isog(B⊢B)

(idA(q) × idB(p)) · (q ⊗ p)



126 6 Composition and Categorical Structure

=
∑

x∈Pos(A)

∑
y∈Pos(B)

1

♯Sym (x) × ♯Sym (y) ·
(
𝑐𝑐x ⊗ 𝑐𝑐y

)
=

∑
x∈Pos(A)

∑
y∈Pos(B)

1

♯Sym (x) × ♯Sym (y) ·
(
𝑐𝑐x ⊗ 𝑐𝑐y

)
=

∑
x∈Pos(A)

∑
y∈Pos(B)

1

♯Sym (x) × ♯Sym (y) ·
(
𝑐𝑐x⊗y

)
=

∑
x∈Pos(A)

∑
y∈Pos(B)

1

♯Sym (x) × ♯Sym (y) ·
(
𝑐𝑐x⊗y

)
=

∑
x∈Pos(A)

∑
y∈Pos(B)

1

♯Sym (x ⊗ y) ·
(
𝑐𝑐x⊗y

)
=

∑
z∈Pos(A⊗B)

1

♯Sym (z) · 𝑐𝑐z

= idA⊗B

by Definition 6.34 (tensor of strategies); Definition 6.20 (copycat

strategy) and Lemma 6.37 (support of the copycat strategy); preser-

vation of isomorphisms by tensor; Lemma 6.36 (tensor of copycat

augmentations); Lemma 5.8 (tensor of configurations); Lemma 6.35

(tensor and symmetries); Lemma 6.35 (tensor of positions); and

finally the definition of copycat again.

Likewise, we have the following property for tensor and composition of

augmentations:

Proof idea: For 𝑖 = 1, 2, we set

𝜃𝑖 : 𝑏 ∈ |𝑥
𝑞𝑖
B𝑖
| ↦→ 𝑏′ ∈ |𝑥𝑝𝑖B𝑖

|

with 𝑏′ such that 𝜃(𝑖 , 𝑏) = (𝑖 , 𝑏′).
Then

𝜒 : (1, (1, 𝑎)) ↦→ (1, (1, 𝑎))
(1, (2, 𝑎)) ↦→ (2, (1, 𝑎))
(2, (1, 𝑐)) ↦→ (1, (2, 𝑐))
(2, (2, 𝑐)) ↦→ (2, (2, 𝑐))

is an isomorphism between

(
𝑝1 ⊗ 𝑝2

)
⊙𝜃(

𝑞1 ⊗ 𝑞2

)
and

(
𝑝1 ⊙𝜃

1
𝑞1

)
⊗

(
𝑝2 ⊙𝜃

2
𝑞2

)
.

Lemma 6.39 – Tensor and comp., augmentations

Consider 𝑞𝑖 : A𝑖 ⊢ B𝑖 , 𝑝𝑖 : A𝑖 ⊢ B𝑖 for 𝑖 = 1, 2, along with the

isomorphism:

𝜃 : 𝑥
𝑞1⊗𝑞2

B1⊗B2

�B1⊗B2
𝑥
𝑝1⊗𝑝2

B1⊗B2

.

Then 𝜃 can be decomposed into two isomorphisms

𝜃1 : 𝑥
𝑞1

B1

�B1
𝑥
𝑝1

B1

and 𝜃2 : 𝑥
𝑞2

B2

�B1
𝑥
𝑝2

B2

such that:(
𝑝1 ⊗ 𝑝2

)
⊙𝜃

(
𝑞1 ⊗ 𝑞2

)
�

(
𝑝1 ⊙𝜃1

𝑞1

)
⊗

(
𝑝2 ⊙𝜃2

𝑞2

)
.

This translates to a property for strategies:

Proof idea: Similar to the proof of Propo-

sition 6.31, using the previous lemma.

Lemma 6.40 – Tensor and comp., strategies

Consider 𝜎𝑖 : A𝑖 ⊢ B𝑖 , 𝜏𝑖 : A𝑖 ⊢ B𝑖 for 𝑖 = 1, 2. Then,

(𝜏1 ⊙ 𝜎1) ⊗ (𝜏2 ⊙ 𝜎2) = (𝜏1 ⊗ 𝜏2) ⊙ (𝜎1 ⊗ 𝜎2) .

Using Lemmas 6.38 and 6.40, we obtain that ⊗ is a bifunctor.

Proposition 6.41 – Functoriality of ⊗

The tensor ⊗ is a bifunctor on PCG × PCG→ PCG.



6.4 PCG is a SMCC 127

6.4.2 Structural morphisms – intuitively

Structural morphisms are all variations of copycat. As we did for copycat

itself, we start with concrete representatives. Consider A, B, C arenas,

and 𝑥 ∈ Conf(A), 𝑦 ∈ Conf(B), 𝑧 ∈ Conf(C). Recall that we write I for the

empty arena. Denoting the empty configuration on I with ∅, we set:

⟬𝜆𝑥A⟭ = ∅ ⊗ 𝑥 ⊢ 𝑥 , ⟬𝛼𝑥,𝑦,𝑧A,B,C⟭ = 𝑥 ⊗ (𝑦 ⊗ 𝑧) ⊢ (𝑥 ⊗ 𝑦) ⊗ 𝑧 ,
⟬𝜌𝑥A⟭ = 𝑥 ⊗ ∅ ⊢ 𝑥 , ⟬𝛾𝑥,𝑦A,B⟭ = 𝑥 ⊗ 𝑦 ⊢ 𝑦 ⊗ 𝑥 ,

and the corresponding augmentations are defined from these, augmented

with the obvious copycat behaviour.

We lift this to isogmentations: for x ∈ Pos(A), 𝝀x
A is the isomorphism class

of 𝜆
x
A; and likewise for the others. Then the strategy 𝜆A is defined as for

idA by setting:

𝜆A
def

=
∑

x∈Pos(A)

1

♯Sym (x) · 𝝀
x
A

and likewise for 𝜌A, 𝛼A,B,C and 𝛾A,B.

Before proving that these structural morphisms satisfy the conditions

of Definitions 1.1 (monoidal category) and 1.2 (symmetric monoidal

category), we need a few more technical tools, which we introduce in the

next subsection.

6.4.3 Renamings

In order to handle the structural morphisms more easily, we introduce

renamings, which allow us to change the arena image of an augmentation

without modifying its structure.

Definitions. We start with renamings of arenas.

Definition 6.42 – Renamings on arenas

Consider arenas A and B. A renaming 𝑓 ∈ Ren(A, B) is a function

𝑓 : |A| → |B| such that:

minimality-preserving: a minimal for ≤A⇔ 𝑓 (a)minimal for ≤B,

causality-preserving: if a1 ≤A a2 then 𝑓 (a1) ≤B 𝑓 (a2).

We now define (co-)renamings on configurations.

Definition 6.43 – Configuration (co-)renamings

Consider 𝑥 ∈ Conf(A ⊢ B), 𝑓 ∈ Ren(B, B′), 𝑔 ∈ Ren(A, A′). We

define the renaming of 𝑥 by 𝑓 , denoted 𝑓 ⋊ 𝑥, as:

| 𝑓 ⋊ 𝑥| := |𝑥|
≤ 𝑓⋊𝑥 := ≤𝑥
𝜕 𝑓⋊𝑥 : (1, 𝑒) ↦→ 𝜕𝑥((1, 𝑒))

(2, 𝑒) ↦→ (2, 𝑓 (b)) s.t. (2, b) = 𝜕𝑥((2, 𝑒)) .



128 6 Composition and Categorical Structure

Likewise, we define the co-renaming of 𝑥 by 𝑔, denoted 𝑥 ⋉ 𝑔, as:

|𝑥 ⋉ 𝑔| := |𝑥|
≤𝑥⋉𝑔 := ≤𝑥
𝜕𝑥⋉𝑔 : (1, 𝑒) ↦→ (1, 𝑔(a)) s.t. (1, a) = 𝜕𝑥((1‘, 𝑒))

(2, 𝑒) ↦→ (2, 𝑒) .

By definition of configurations and (co-)renamings, we have:

Proposition 6.44

With 𝑥, 𝑓 , 𝑔 as above, we obtain:

𝑓 ⋊ 𝑥 ∈ Conf(A ⊢ B′) 𝑥 ⋉ 𝑔 ∈ Conf(A′ ⊢ B) .

This allows us to define renamings on augmentations and isogmentations.

Definition 6.45 – Augmentation (co-)renamings

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑓 ∈ Ren(B, B′), 𝑔 ∈ Ren(A, A′).
We define the renaming of 𝑞 by 𝑓 , denoted 𝑓 ⋊ 𝑞, as:

⟬ 𝑓 ⋊ 𝑞⟭ := 𝑓 ⋊ ⟬𝑞⟭
≤ 𝑓⋊𝑞 := ≤𝑞 .

Likewise, we define the co-renaming of 𝑞 by 𝑔, denoted 𝑞 ⋉ 𝑔, as:

⟬𝑞 ⋉ 𝑔⟭ := ⟬𝑞⟭ ⋉ 𝑔
≤𝑞⋉𝑔 := ≤𝑝 .

Again, by definition, we have:

Proposition 6.46

With 𝑞, 𝑓 , 𝑔 as above, we obtain:

𝑓 ⋊ 𝑞 ∈ Aug(A ⊢ B′) 𝑞 ⋉ 𝑔 ∈ Aug(A′ ⊢ B) .

It is clear that (co-)renamings are invariant under isomorphism.

Lemma 6.47

Consider the augmentations 𝑞, 𝑝 ∈ Aug(A ⊢ B) such that 𝑞 � 𝑝,

along with the renamings 𝑓 ∈ Ren(B, B′) and 𝑔 ∈ Ren(A, A′).
Then:

𝑓 ⋊ 𝑞 � 𝑓 ⋊ 𝑝 and 𝑞 ⋉ 𝑔 � 𝑝 ⋉ 𝑔 .



6.4 PCG is a SMCC 129

Thus we unambiguously define isogmentation (co-)renamings.

Definition 6.48 – Isogmentation (co-)renamings

Consider q ∈ Isog(A ⊢ B), 𝑓 ∈ Ren(B, B′), 𝑔 ∈ Ren(A, A′).
We define the renaming of q by 𝑓 , denoted 𝑓 ⋊ q, as:

𝑓 ⋊ q := 𝑓 ⋊ q .

Likewise, we define the co-renaming of q by 𝑔, denoted q ⋉ 𝑔, as:

q ⋉ 𝑔 := q ⋉ 𝑔 .

Finally, we can define renamings of strategies.

Definition 6.49 – Strategy (co-)renamings

Consider 𝜎 : A ⊢ B, 𝑓 ∈ Ren(B, B′), 𝑔 ∈ Ren(A, A′).
We define the renaming of 𝜎 by 𝑓 , denoted 𝑓 ⋊ 𝜎, as:

𝑓 ⋊ 𝜎 :=
∑

q∈Isog(A⊢B)
𝜎(q) ·

(
𝑓 ⋊ q

)
.

Likewise, we define the co-renaming of 𝜎 by 𝑔, denoted 𝜎 ⋉ 𝑔, as:

𝜎 ⋉ 𝑔 :=
∑

q∈Isog(A⊢B)
𝜎(q) ·

(
q ⋉ 𝑔

)
.

Again, (co-)renamings of strategies are strategies:

Proposition 6.50

Consider 𝜎, 𝑓 , 𝑔 as above. Then:

𝑓 ⋊ 𝜎 : A ⊢ B′ 𝜎 ⋉ 𝑔 : A′ ⊢ B .

Now we can define structural morphisms using renamings – but before

that, we state a few technical lemmas.

Technical lemmas. Renamings have properties that will be useful for

proving that the structual morphisms indeed satisfy the definition of a

resource category. We state some of these properties here; most of the

proofs are immediate by definition.

Lemma 6.51 – Identity renaming

Consider 𝜎 : A ⊢ B. Then:

idB ⋊ 𝜎 = 𝜎 = 𝜎 ⋉ idA .



130 6 Composition and Categorical Structure

Lemma 6.52 – Composition of renamings

Consider 𝜎 : A0 ⊢ B0, 𝑓1 ∈ Ren(B0 , B1), 𝑓2 ∈ Ren(B1 , B2). Then:

𝑓2 ⋊
(
𝑓1 ⋊ 𝜎

)
=

(
𝑓2 ◦ 𝑓1

)
⋊ 𝜎 .

Likewise, for any 𝑔1 ∈ Ren(A0 , A1), 𝑔2 ∈ Ren(A1 , A2), we have:(
𝜎 ⋉ 𝑔1

)
⋉ 𝑔2 = 𝜎 ⋉

(
𝑔2 ◦ 𝑔1

)
.

Lemma 6.53 – Renaming of a composition

Consider 𝜎 : A ⊢ B, 𝜏 : B ⊢ C, 𝑓 ∈ Ren(A, A′), 𝑔 ∈ Ren(C,C′).
Then:

(𝜏 ⊙ 𝜎) ⋉ 𝑓 = 𝜏 ⊙ (𝜎 ⋉ 𝑓 )

and

𝑔 ⋊ (𝜏 ⊙ 𝜎) = (𝑔 ⋊ 𝜏) ⊙ 𝜎 .

Lemma 6.54 – Inverse renaming

Consider 𝑓 ∈ Ren(A, B). If 𝑓 is invertible, then:

𝑓 ⋊ idA = idB ⋉ 𝑓 −1 .

Lemma 6.55 – Composition with a renaming

Consider 𝜎 : A ⊢ B, 𝑓 ∈ Ren(B,C) invertible, and 𝜏 : C ⊢ D. Then:

𝜏 ⊙
(
𝑓 ⋊ 𝜎

)
=

(
𝜏 ⋉ 𝑓 −1

)
⊙ 𝜎 .

Lemma 6.56 – Renamings and tensors

Consider two strategies 𝜎1 : A ⊢ C, 𝜎2 : B ⊢ D and two renamings

𝑓1 ∈ Ren(C,C′), 𝑓2 ∈ Ren(D,D′).
We define the product 𝑓1 × 𝑓2 as:

𝑓1 × 𝑓2 : (C ⊗ D) → (C′ ⊗ D′)
(𝑖 , e) ↦→ (𝑖 , 𝑓𝑖(e)) .

Then: (
𝑓1 ⋊ 𝜎1

)
⊗

(
𝑓2 ⋊ 𝜎2

)
=

(
𝑓1 × 𝑓2

)
⋊ (𝜎1 ⊗ 𝜎2) .

Likewise, for any 𝑔1 ∈ Ren(A, A′), 𝑔2 ∈ Ren(B, B′), we have:(
𝜎1 ⋉ 𝑔1

)
⊗

(
𝜎2 ⋉ 𝑔2

)
= (𝜎1 ⊗ 𝜎2) ⋉

(
𝑔1 × 𝑔2

)
.



6.4 PCG is a SMCC 131

Lemma 6.57 – Identity with an invertible renaming

Consider 𝑓 ∈ Ren(A, A′) a bĳection.

Then 𝑓 ⋊ idA and idA ⋉ 𝑓 are isomorphisms.

Proof. The inverses are 𝑓 −1 ⋊ idA′ and idA′ ⋉ 𝑓 −1
. We can check that:

( 𝑓 −1 ⋊ idA′) ⊙ ( 𝑓 ⋊ idA) = (idA ⋉ 𝑓 ) ⊙ ( 𝑓 ⋊ idA) (Lemma 6.54)

= idA ⊙
(
𝑓 −1 ⋊ ( 𝑓 ⋊ idA)

)
(Lemma 6.55)

= 𝑓 −1 ⋊ ( 𝑓 ⋊ idA) (Lemma 6.30)

= ( 𝑓 −1 ◦ 𝑓 ) ⋊ idA (Lemma 6.53)

= idA (Lemma 6.51)

The other equalities are similar.

6.4.4 Structural morphisms – formally

We now give alternate definitions of the structural morphisms.

Associator. For any arenas A, B, C, we set the following renaming:

aA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)
(1, (1, a)) ↦→ (1, a)
(1, (2, b)) ↦→ (2, (1, b))
(2, c) ↦→ (2, (2, c)) .

We define the associator 𝛼A,B,C as:

𝛼A,B,C := aA,B,C ⋊ id(A⊗B)⊗C .

Left-unitor. For any arena B, we set the following renaming:

lB : I ⊗ B → B
(2, b) ↦→ b .

We define the left-unitor 𝜆B as:

𝜆B := lB ⋊ idI⊗B .

Right-unitor. For any arena A, we set the following renaming:

rA : A ⊗ I → A
(1, a) ↦→ a .

We define the right-unitor 𝜌A as:

𝜌A := rA ⋊ idA⊗I .



132 6 Composition and Categorical Structure

Symmetry. For any arenas A, B, we set the following renaming:

sA,B : (A ⊗ B) → (B ⊗ A)
(1, a) ↦→ (2, a)
(2, b) ↦→ (1, b) .

We define the symmetry 𝛾A,B as:

𝛾A,B := sA,B ⋊ idA⊗B .

These morphisms behave like the intuitive definitions given in 6.4.2. We

can now formally check they satisfy the conditions of Definitions 1.1

(monoidal category) and 1.2 (symmetric monoidal category).

Remark that all renamings are bĳective, which implies that the structural

morphisms are isomorphisms by Lemma 6.57.

We detail the triangle identity:

Lemma 6.58 – Triangle identity

For any arenas A, B, the following diagram commutes.

(A ⊗ I) ⊗ B A ⊗ (I ⊗ B)

A ⊗ B

𝛼A,I,B

𝜌A ⊗ idB idA ⊗ 𝜆B

Proof. For any arenas A, B, we have:

(idA ⊗ 𝜆B) ⊙ 𝛼A,I,B

= (idA ⊗ (lB ⋊ idI⊗B)) ⊙ 𝛼A,I,B (Definition of 𝜆)

=
(
idA ⊗

(
idB ⋉ l−1

B
) )
⊙ 𝛼A,I,B (Lemma 6.54)

=
(
(idA ⋉ idA) ⊗

(
idB ⋉ l−1

B
) )
⊙ 𝛼A,I,B (Lemma 6.51)

=
(
(idA ⊗ idB) ⋉

(
idA × l−1

B
) )
⊙ 𝛼A,I,B (Lemma 6.56)

= (idA ⊗ idB) ⊙ ((idA × lB) ⋊ 𝛼A,I,B) (Lemma 6.55)

= idA⊗B ⊙ ((idA × lB) ⋊ 𝛼A,I,B) (Lemma 6.38)

= (idA × lB) ⋊ 𝛼A,I,B (Proposition 6.31)

= (idA × lB) ⋊
(
aA,I,B ⋊ id(A⊗I)⊗B

)
(Definition of 𝛼)

= ((idA × lB) ◦ aA,I,B) ⋊ id(A⊗I)⊗B (Lemma 6.52)

= (rA × id𝐵) ⋊ id(A⊗I)⊗B (★)
= (rA × id𝐵) ⋊ (idA⊗I ⊗ idB) (Lemma 6.38)

= (rA ⋊ idA⊗I) ⊗ (idB ⋊ idB) (Lemma 6.56)

= (rA ⋊ idA⊗I) ⊗ idB (Lemma 6.54)

=𝜌A ⊗ idB (Definition of 𝜌)

where (★) is a direct computation of both functions.

The other identities are very similar.



6.4 PCG is a SMCC 133

More generally, this construction

𝑓 ∈ Ren(A, B) ↦→ 𝑓 ⋊ idA ∈ PCG(A, 𝑓 (A))

is a strict monoidal functor between Ren and PCG, which means that the

structural morphisms of PCG are simply obtained by transport from Ren.

Hence all the coherence diagrams commute.

We still need to check all the morphisms are natural. We show the detailed

proof for one diagram.

Lemma 6.59 – Naturality of 𝜆

Consider arenas A, B. For any strategy 𝜎 : A ⊢ B, we have

𝜎 ⊙ 𝜆A = 𝜆B ⊙ (idI ⊗ 𝜎) .

Proof. On the one hand, we have:

𝜎 ⊙ 𝜆A

= 𝜎 ⊙ (lA ⋊ idI⊗A) (Definition of 𝜆)

=
(
𝜎 ⋉ l−1

A
)
⊙ idI⊗A (Lemma 6.55)

= 𝜎 ⋉ l−1

A (Proposition 6.31)

and on the other hand:

𝜆B ⊙ (idI ⊗ 𝜎)
= (lB ⋊ idI⊗B) ⊙ (idI ⊗ 𝜎) (Definition of 𝜆)

= lB ⋊ (idI⊗B ⊙ (idI ⊗ 𝜎)) (Lemma 6.53)

= lB ⋊ (idI ⊗ 𝜎) (Proposition 6.31)

Consider an isogmentation q ∈ supp(𝜎 ⋉ l−1

A ), then it is of the form

q = q′ ⋉ l−1

A with q′ ∈ supp(𝜎) and it appears in 𝜎 ⋉ l−1

A with the

coefficient 𝜎(q′). But a direct computation yields:

q′ ⋉ l−1

A = lB ⋊ (0 ⊗ q′) .

Hence, recalling that idI = 1 · 0 (with 0 the empty isogmentation),

we obtain:

lB ⋊ (idI ⊗ 𝜎) =
∑

q∈supp(𝜎)
𝜎(q) · (lB ⋊ (0 ⊗ q′))

=
∑

q∈supp(𝜎)
𝜎(q) ·

(
q ⋉ l−1

A
)

= 𝜎 ⋉ l−1

A .

Again, the other naturality diagrams are similar.



134 6 Composition and Categorical Structure

We can now state our first theorem specifying the categorical structure

of PCG.

Theorem 6.60 – PCG is a SMC

(PCG,⊗, I) is a symmetric monoidal category.

6.4.5 Closed structure

Recall the currying bĳection Λ introduced in Subsection 5.3.4.

Definition 6.61 – Currying strategies

Consider arenas G, A and B. For any 𝜎 : (G ⊗ A) ⊢ B, we set

ΛG,A,B(𝜎)
def

=
∑

q∈Isog(G⊗A⊢B)
𝜎(q) · ΛIsog

G,A,B(q) .

This definition directly yields:

ΛG,A,B : PCG(G ⊗ A, B) � PCG(G, A⇒ B) .

Moreover, we have the following property:

Lemma 6.62 – Λ preserves composition

Consider arenas G,G′, A, B and strategies 𝜎 : G⊗A ⊢ B and 𝜏 : G′ ⊢ G.

Then, we have:

ΛG,A,B(𝜎) ⊙ 𝜏 = ΛG′ ,A,B (𝜎 ⊙ (𝜏 ⊗ idA)) .

Proof. Computation of both sides of the equation, following the

definitions.

From this, we obtain the evaluation morphism with:

evA,B
def

= Λ−1

A⇒B,A,B (idA⇒B) .

Altogether, these give us the closed structure of PCG.

Theorem 6.63 – PCG is a SMCC

(PCG,⊗, I) is a symmetric monoidal closed category.

Proof. PCG is a SMC by Theorem 6.60. For any arenas G, A, B and

morphisms 𝜎 : G ⊗ A ⊢ B and 𝜏 : G ⊢ A⇒ B, we have the following

equalities:

evA,B ⊙ (ΛG,A,B(𝜎) ⊗ idA) = 𝜎 (6.4)

ΛG,A,B (evA,B ⊙ (𝜏 ⊗ idA)) = 𝜏 (6.5)

which follow from a direct computation.



6.5 From qualitative PCG to HO 135

6.5 From qualitative PCG to HO

We show that the earlier isomorphisms between isogmentations and

quotiented plays extend to strategies and composition. For this section,
we consider the qualitative version of PCG, where strategies are sets of
isogmentations without coefficients.

Recall that we have the following isomorphism (Figure 3.17):

VisPlays+(A)/∼𝐸 Isog(A)�

isog(−)

Plays(−)

for plays quotiented by Mellies’ homotopy equivalence and isogmenta-

tions. Furthermore, we defined Meagre Innocent Isogmentations as −-linear

isogmentations (Definition 3.29), and we saw that these were in bĳection

with innocent strategies in HO (Figure 3.23):

HOInn
𝑓
(A) MII(A)�

MII(−)

HOstrat(−)

Finally, we defined Fat Innocent Isogmentations (Definition 3.45), which

are the isoexpansions of a mii, corresponding to the set of plays of an

innocent strategy in HO (Figure 3.25):

HOInn
𝑓
(A) MII(A)

FII(A)

MII(−)

iexp(−)isog(−)

Remark: We present the constructions for finite innocent strategies in HO;

one could consider∞-isogmentations for the general case.

Now, we want all these isomorphisms to still preserve the categorical

structure of PCG: in particular, that the identities coincide, and that the

composition is compatible with the isomorphism Plays(−).

6.5.1 Arrowing

In Chapter 3, we studied the link between plays and isogmentations

for a fixed −-arena A. But what happens when we want to consider a

strategy 𝜎 : A ⊢ B, for A, B −-arenas? Since A ⊢ B is not negative, it is

not an HO arena, hence we need first to turn 𝜎 : A ⊢ B into a strategy

Λ⇒(𝜎) : A⇒ B.

This is a particular case of the curryfication.



136 6 Composition and Categorical Structure

2: Recall that we consider the qualita-

tive version of PCG here, hence why we

define Λ⇒(𝜎) as a set of isogmentations.

Reminder: For 𝑞 ∈ Aug(A), we have:

Plays(𝑞) def

= {𝜕𝑞(t) | t ∈ Alt(𝑞)}

(see Definition 3.24). For q ∈ Isog(A):

Plays(q) def

= Plays(q)

and finally for any 𝜎 ⊆ Isog(A):

Plays(𝜎) def

=
⋃
q∈𝜎

Plays(q) .

Definition 6.64 – Arrowing of augmentations

Consider 𝑞 ∈ Aug(A ⊢ B). We define Λ⇒(𝑞)with:

|Λ⇒(𝑞)| = |𝑞|
𝑎 ≤⟬Λ⇒(𝑞)⟭ 𝑏 iff

(
𝑎 ≤⟬𝑞⟭ 𝑏

)
or (𝑎 = init(𝑏))

𝑎 ≤Λ⇒(𝑎) 𝑏 iff 𝑎 ≤𝑞 𝑏

𝜕Λ⇒(𝑞)(𝑎) =


(2, b) if 𝜕𝑞(𝑎) = (2, b) ,
(1, (b, c)) if 𝜕𝑞(𝑎) = (1, c)

and 𝜕𝑞(init(𝑎)) = (2, b) .

Then Λ⇒(𝑞) ∈ Aug(A⇒ B).

Proof. Clear by definition and Lemma 5.13.

Proposition 6.65 – Arrowing isomorphism

We have an isomorphism

Λ⇒ : Aug(A ⊢ B) � Aug(A⇒ B) .

We write Λ⊢ for the reverse isomorphism.

This construction clearly preserves isomorphism, hence we define

Λ⇒(q) def

= Λ⇒(q)

for any q ∈ Isog(A ⊢ B).

Finally we extend Λ⇒(−) to strategies
2

with, for any 𝜎 : A ⊢ B,

Λ⇒(𝜎) def

= {Λ⇒(q) | q ∈ 𝜎} .

6.5.2 Plays⇒(−) and innocent strategies

Now we can define the plays of strategies on A ⊢ B.

Definition 6.66 – Plays⇒(−)

Consider 𝜎 : A ⊢ B, then we define

Plays⇒(𝜎) def

= Plays(Λ⇒(𝜎)) .

Be careful: in general Plays⇒(𝜎) is not a strategy in HO! Indeed, strategies

in PCG are sets of isogmentations, and there is no condition of non-

emptyness, prefix closure, or determinism.

As before, we need to consider innocent strategies. Recall that innocence

in PCG is characterized by being a FII i.e. the set of isoexpansions of a

−-linear isogmentation (Definition 3.45). Thankfully, Λ⇒(−) preserves

this property.



6.5 From qualitative PCG to HO 137

Lemma 6.67 – Λ⇒(−) preserves FIIs

Consider 𝜎 : A ⊢ B. Then,

𝜎 ∈ FII(A ⊢ B) ⇔ Λ⇒(𝜎) ∈ FII(A⇒ B) .

Proof. Only if.Λ⇒(−) preserves isomorphisms, so if 𝜎 = iexp(q) for

some −-linear q, then Λ⇒(q) is −-linear and Λ⇒(𝜎) = iexp(Λ⇒(q)).
If. Likewise, if Λ⇒(𝜎) = iexp(p) for some −-linear p, then Λ⊢(p) is
−-linear and 𝜎 = iexp(Λ⊢(p)).

Hence all the isomorphisms between PCG and HO presented in Chapter 3

still stand.

6.5.3 Identities

We now prove that Plays⇒(−) preserves identities.

Proposition 6.68 – Plays⇒(−) preserves identities.

Consider an arena A. Then,

Plays⇒(idA) = ccHO
A .

Proof. We start with the inclusion Plays⇒(idA) ⊆ ccHO
A .

Consider 𝑠 ∈ Plays⇒(idA). Unfolding the definitions, we have:

Plays⇒(idA) = Plays(Λ⇒(idA))
=

⋃
q∈Λ⇒(idA)

Plays(q)

=
⋃

q∈idA

Plays(Λ⇒(q))

=
⋃

x∈Pos(A)
Plays(Λ⇒(ccx))

=
⋃

x∈Pos(A)

{
𝜕Λ⇒(ccx)(t) | t ∈ Alt(Λ⇒(ccx))

}
.

Consider x ∈ Pos(A), 𝑞 := Λ⇒(ccx) and t := t1 . . . t𝑛 ∈ Alt(𝑞) such

that 𝑠 = 𝜕𝑞(t). We know that 𝑠 ∈ Plays(A⇒ A).
Reminder: (Definition 2.22) 𝑠 ∈ ccHO

A iff:

1. ∀𝑠′ ⊑+ 𝑠, 𝑠′ ↾ Aℓ = 𝑠′ ↾ A𝓇,

2. if 𝑠−
𝑖

, 𝑠+
𝑖+1

are minimal in A, then

𝑠𝑖+1
points to 𝑠𝑖 .

Let us first prove condition (1) of the definition of ccHO
A . We prove by

induction on 𝑠′ that for any 𝑠′ ⊑+ 𝑠, we have 𝑠′ ↾Aℓ = 𝑠′ ↾A𝓇, where

we use indices to distinguish between the two copies of the arena A.

The equality is clear on the empty case, so consider 𝑠′ 𝑠−
𝑖
𝑠+
𝑖+1
⊑+ 𝑠.

By induction, 𝑠′ ↾ Aℓ = 𝑠′ ↾ A𝓇. Moreover, we know that t−
𝑖

_t t+
𝑖+1

,

so by Lemma 3.22 we have t𝑖 _𝑞 t𝑖+1. But Λ⇒ preserves the causal

order, so we also have t𝑖 _Λ⊢(𝑞) t𝑖+1. Since Λ⊢(𝑞) � 𝑐𝑐x, we use

Lemma 6.28 to conclude that t𝑖 and t𝑖+1 correspond to the same

event in A, but from both side of the arena A⇒ A, thus proving that

𝑠′ 𝑠−
𝑖
𝑠+
𝑖+1

↾ Aℓ = 𝑠′ 𝑠−
𝑖
𝑠+
𝑖+1

↾ A𝓇 (where the pointers are also equal, by

definition of ≤⟬𝑐𝑐x⟭).



138 6 Composition and Categorical Structure

Now, we prove the second condition of the definition of ccHO
A .

Consider 𝑠−
𝑖

, 𝑠+
𝑖+1

minimum in A, by negativity of A we have

𝜕𝑞(t−𝑖 ) = (2, a) and 𝜕𝑞(t+𝑖+1
) = (1, (a, a)) with a ∈ min(A).

So t𝑖 is minimal for≤⟬𝑞⟭; and thus for≤𝑞 by minimality-preservation.

Moreover, by Lemma 3.22, we have t−
𝑖

_𝑞 t+
𝑖+1

. Since Λ⇒ preserves

the causal order, we actually have

t𝑖 ∈ min(≤Λ⊢(𝑞)) and t𝑖 _Λ⊢(𝑞) t𝑖+1 ,

so by Lemma 5.13 we obtain t𝑖 = init(t𝑖+1). Thus, by definition of Λ⇒,

we have

t𝑖 _⟬𝑞⟭ t𝑖+1 ,

and 𝑠𝑖+1 points to 𝑠𝑖 as needed.

Hence, Plays⇒(idA) ⊆ ccHO
A . We now prove the reverse inclusion.

Consider 𝑠 ∈ ccHO
A . We need to find 𝑞 ∈ Aug(A ⊢ A) such that

𝑞 ∈ idA and 𝑠 ∈ Plays⇒(𝑞) .

Consider 𝑞 := Λ⊢(aug(𝑠)). Then it is clear that:

𝑞 ∈ Aug(A ⊢ A) and 𝑠 ∈ Plays⇒(𝑞) ,

so we only have to check that 𝑞 ∈ idA, i.e. we want 𝑞 = ccx for some

x ∈ Pos(A). Since 𝑠 ∈ Plays(A⇒ A), the restriction 𝑠 ↾ A𝓇 informs a

position x ∈ Pos(A). Indeed, consider the configuration 𝑥 with:

|𝑥| := {1, . . . , 𝑝 }with 𝑝 the lenght of 𝑠 ↾ A𝓇 ,

𝑖 _𝑥 𝑗 iff (𝑠 ↾ A𝓇)𝑗 points to (𝑠 ↾ A𝓇)𝑖 .

Then 𝑥 ∈ Conf(A), and we set x := 𝑥. We show that 𝑞 � 𝑐𝑐𝑥 , with

the isomorphism:

𝜉 : |𝑞| → |𝑐𝑐𝑥|
𝑖 ↦→ (𝓈, 𝑗) s.t. 𝑠𝑖 ∈ (𝑠 ↾ A𝓈) and 𝑠𝑖 has the index 𝑗 in 𝑠 ↾ A𝓈.

The isomorphism between event sets, static orders and display maps

is clear from the fact that for any 𝑠′ ⊑+ 𝑠, 𝑠′ ↾ Aℓ = 𝑠′ ↾ A𝓇. For the

causal order, we have:

(a) Let us prove that 𝑖− _𝑞 𝑘
+

iff 𝑘 = 𝑖 + 1. We know that 𝑠𝑖 and

𝑠𝑖+1 correspond to the same event in both sides of A⇒ A. Hence, if

𝜉(𝑖) = (𝓈, 𝑗), then 𝜉(𝑖+1) = (𝓈′, 𝑗)with 𝓈′ ≠ 𝓈, and 𝜉(𝑖)_𝑐𝑐𝑥 𝜉(𝑖+1)
by Lemma 6.28. Reciprocally, if (𝓈, 𝑗)− _𝑐𝑐𝑥 (𝓈′, 𝑗′)+, then by Lemma

6.28 𝓈 ≠ 𝓈′ and 𝑗 = 𝑗′, and clearly 𝜉−1(𝓈′, 𝑗) = 𝜉−1(𝓈, 𝑗) + 1.

(b) Let us prove that 𝑖+ _𝑞 𝑘− iff 𝑠𝑘 points to 𝑠𝑖 . Since both

restrictions of 𝑠 to Aℓ and A𝓇 are plays, 𝑠𝑘 points to 𝑠𝑖 implies

that both moves are played in the same side A𝓈 of A ⇒ A. So

𝜉(𝑖) = (𝓈, 𝑗) and 𝜉(𝑘) = (𝓈, 𝑗′); and the pointers are preserved, so

(𝓈, 𝑗) _𝑐𝑐𝑥 (𝓈, 𝑗′). Reciprocally, (𝓈, 𝑗) _𝑐𝑐𝑥 (𝓈′, 𝑗′) iff 𝓈 = 𝓈′ and

𝑗 _𝑥 𝑗
′
, i.e. 𝜉−1((𝓈, 𝑗))_𝑞 𝜉−1((𝓈, 𝑗′)).



6.5 From qualitative PCG to HO 139

6.5.4 Composition

We now prove that Plays⇒(−) is compatible with the composition.

Proposition 6.69 – Plays⇒(−) and composition

Consider A, B and C arenas; and two strategies 𝜎 : A ⊢ B and

𝜏 : B ⊢ C. Then,

Plays⇒(𝜏 ⊙ 𝜎) = Plays⇒(𝜏) ⊙HO Plays⇒(𝜎) .

One of the inclusion is easy: given an interaction between two plays, we

can construct an isomorphism between the corresponding augmentations.

Lemma 6.70 – Plays⇒(−) and composition, part 1

Consider A, B and C arenas with 𝜎 : A ⊢ B and 𝜏 : B ⊢ C. Then:

Plays⇒(𝜏) ⊙HO Plays⇒(𝜎) ⊆ Plays⇒(𝜏 ⊙ 𝜎) .

Proof. Consider 𝑠 ∈ Plays⇒(𝜏) ⊙HO Plays⇒(𝜎). Then 𝑠 ∈ 𝑠𝜏 ⊙HO 𝑠𝜎

for some 𝑠𝜏 ∈ Plays⇒(𝜏) and 𝑠𝜎 ∈ Plays⇒(𝜎). In other words, there

exists an interaction 𝑢 ∈ I(A, B,C) such that:

𝑢 ↾ A, B = 𝑠𝜎 𝑢 ↾ B,C = 𝑠𝜏 𝑢 ↾ A,C = 𝑠 .

Hence there exists 𝑞 ∈ q ∈ Λ⇒(𝜎) (resp. 𝑝 ∈ p ∈ Λ⇒(𝜏)) with the

linearisation t𝜎 (resp. t𝜏), such that:

𝑠𝜎 = 𝜕𝑞(t𝜎) and 𝑠𝜏 = 𝜕𝑝(t𝜏) .

Moreover, the events occuring in B in 𝑠𝜎 and in 𝑠𝜏 are compatible,

and we can define an isomorphism 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B through 𝑢. It

is clear that such a 𝜑 is a configuration isomorphism, since the

constructions 𝜕𝑞(t𝜎) and 𝜕𝑝(t𝜏) preserve pointers and arena image.

So, we can consider 𝑟 = Λ⊢(𝑝)⊙𝜑Λ⊢(𝑞), and we have 𝑠 ∈ Alt(𝑟).

The other inclusion is not so easy, because we need to build a sequential

interaction from the isomorphism. In other words, given an alternating

play 𝑠 ∈ Plays⇒(𝜏 ⊙ 𝜎), we must prove that 𝑠 can only come from the

composition of two alternating plays in Plays⇒(𝜎) and Plays⇒(𝜏). The

problem is that we only know that 𝑠 is obtained from the composition of

some augmentation in 𝜎 and some augmentation in 𝜏, but it is not clear

how we can linearise them and construct an interaction.

To do so, we need additional lemmas on polarity, and the notion of states
of augmentations and interactions.

Definition 6.71 – State of an augmentation

Consider an augmentation 𝑞 ∈ Aug(A). A state of 𝑞 is 𝑋 ⊆ |𝑞|
which is down-closed for ≤𝑞 .



140 6 Composition and Categorical Structure

o ⊢ o

q−

q+ q−

q+ 𝑋

Figure 6.10: An augmentation 𝑞 with a

state 𝑋.

Notation: If 𝑋 ⊆ |𝑞|, we write:

|𝑋|− := {𝑎 ∈ 𝑋 | pol𝑞(𝑎) = −} ,
|𝑋|+ := {𝑎 ∈ 𝑋 | pol𝑞(𝑎) = +} .

Remark that a state of 𝑞 ∈ Aug(A) is almost an augmentation on A (with

orders and display map inherited from 𝑞), save for the +-coveredness

condition which might not be respected. Thus the definition of alternating

linearisations can easily be extended to states.

Definition 6.72 – Alternating linearisation of a state

Consider 𝑞 ∈ Aug(A)with a state 𝑋. An alternating linearisation
of 𝑋 is a total order on the events of 𝑋, noted t = t1 . . . t𝑛 with

{t𝑖 | 1 ≤ 𝑖 ≤ 𝑛} = 𝑋, such that:

polarity-alternating: ∀𝑖 < 𝑛, pol(t𝑖) ≠ pol(t𝑖+1) .
causality-respecting: ∀𝑖 < 𝑛, t𝑖 ≤𝑞 t𝑖+1 .

We write Alt(𝑋) for the set of alternating linearisations of 𝑋.

However, because states are not always +-covered, they might not have

alternating linearisation! Take the augmentation on Figure 6.10 for in-

stance, with the state 𝑋. The linearisation obviously fails because 𝑋 has

two negative events and no positive event.

In general, we can observe that an alternative linearisation must either

have the same number of positive and negative events, or just one more

negative event (because the arenas are negative, so the first event is

always negative). This leads us to define O-states and P-states.

Definition 6.73 – O-states and P-state

Consider an augmentation 𝑞 ∈ Aug(A).
An O-state of 𝑞 is a state 𝑋 such that ♯|𝑋|− = ♯|𝑋|+.

A P-state of 𝑞 is a state 𝑋 such that ♯|𝑋|− = ♯|𝑋|+ + 1

Not only is it clear that a state accepting an alternating linearisation must

be an O-state or a P-state, depending on its size; but we can actually

prove that all O-states and P-states have alternating linearisations.

Lemma 6.74 – Linearisation of states

Consider an augmentation 𝑞 ∈ Aug(A)with a state 𝑋. Then:

▶ 𝑋 is an O-state if and only if it has an even-length alternating

linearisation.

▶ 𝑋 is a P-state if and only if it has an odd-length alternating

linearisation.

Proof. We construct an alternating linearisation inductively on

the size of the state, proving that all O/P-states have alternating

linearisations.

If ♯𝑋 = 0. Immediate.

If ♯𝑋 = 2𝑛 + 1. Then 𝑋 is a P-state, and ♯|𝑋|− = ♯|𝑋|+ + 1. For

any event 𝑎 ∈ 𝑋, we call successors in 𝑋 of 𝑎 the events of 𝑋

immediately following 𝑎 in ≤𝑞 , noted succ𝑋(𝑎). We know that every



6.5 From qualitative PCG to HO 141

negative event of 𝑋 has at most one successor by determinism,

so since ♯|𝑋|− = ♯|𝑋|+ + 1, every negative event has exactly one

successor except one, which we will call 𝑎. Since 𝑎 has no successor,

it is maximal in 𝑋 . Thus we can remove it, and 𝑋\{𝑎} is still down-

closed; so it is an O-state of 𝑞 of size 2𝑛. By induction hypothesis,

we construct an even-length alternating linearisation of 𝑋\{𝑎}, and

then add 𝑎 at the end of the linearisation.

If ♯𝑋 = 2𝑛 + 2. Then 𝑋 is an O-state, and ♯|𝑋|− = ♯|𝑋|+ ≤ 1.

Hence any negative event has exactly one successor. Take any event

𝑏+ positive maximal in 𝑋. Then 𝑋\{𝑏} is still down-closed, so by

induction hypothesis it is a P-state of 𝑞 of size 2𝑛 + 1. Thus it has

an alternating linearization, which must end with a negative event

𝑎−. Moreover, this last event is the only negative event of 𝑋\{𝑏}
without a successor. Hence 𝑏 ∈ succ𝑋(𝑎), and we can add 𝑏 at the

end of the linearisation.

We now define states for the interaction of two augmentations. Consider

two augmentations 𝑞 ∈ Aug(A ⊢ B) and 𝑝 ∈ Aug(B ⊢ C), with the

isomorphism 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B. For any 𝑋 ⊆ |𝑝 ⊛𝜑 𝑞|, we write:

𝑋 ↾ A,C = {(1, 𝑒) ∈ 𝑋 | 𝜕𝑞(𝑒) = (1, a)} ∪ {(2, 𝑒) ∈ 𝑋 | 𝜕𝑝(𝑒) = (2, c)},
𝑋 ↾ A, B𝑞 = {𝑒 | (1, 𝑒) ∈ 𝑋},
𝑋 ↾ B𝑞 , B𝑝 = {(1, 𝑒) ∈ 𝑋 | 𝜕𝑞(𝑒) = (2, b)} ∪ {(2, 𝑒) ∈ 𝑋 | 𝜕𝑝(𝑒) = (1, b)},
𝑋 ↾ B𝑝 ,C = {𝑒 | (2, 𝑒) ∈ 𝑋}.

Then, we have:

𝑋 ↾ A,C ⊆ |𝑝 ⊙𝜑 𝑞| 𝑋 ↾ A, B𝑞 ⊆ |𝑞| 𝑋 ↾ B𝑝 ,C ⊆ |𝑝| .

We say that 𝑋 ↾ B𝑞 , B𝑝 is a state of 𝜑 if it is down-closed for ◁∗ restricted

to events occuring in B; in that case we define O-states and P-states as in

Definition 6.73, following the polarities of B𝑞 ⊢ B𝑝 .

A subset of an interaction 𝑋 ⊆ |𝑝⊛𝜑 𝑞| can thus yield up to four different

states: a (potential) state of 𝑝 ⊙𝜑 𝑞, one of 𝑞, one of 𝜑 and one of 𝑝 – and

each of these states can be an O/P-state.

Definition 6.75 – KLMN-states of an interaction

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C), and 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B.

A KLMN-state of 𝑝 ⊛𝜑 𝑞, for K,L,M,N ∈ {O,P}, is 𝑋 ⊆ |𝑝 ⊛𝜑 𝑞|
down-closed for ◁∗, such that:

1. 𝑋 ↾ A,C is a K-state of 𝑝 ⊙𝜑 𝑞,

2. 𝑋 ↾ A, B𝑞 is a L-state of 𝑞,

3. 𝑋 ↾ B𝑞 , B𝑝 is a M-state of 𝜑,

4. 𝑋 ↾ B𝑝 ,C is a N-state of 𝑝,

Thanks to these polarities we can finally describe the linearisation needed

for the proof of Proposition 6.69.



142 6 Composition and Categorical Structure

Figure 6.11: Polarities of an interaction

POOP

POPO OOOO POPO

PPOO

𝑐+ 𝑐−

𝑎+ 𝑎−

𝜑(𝑏1)+ 𝑏−
2

𝜑(𝑏2)−𝑏+
1

Lemma 6.76 – Polarities of an interaction

Consider 𝑞 ∈ Aug(A ⊢ B), 𝑝 ∈ Aug(B ⊢ C), 𝜑 : 𝑥𝑞↾B �B 𝑥𝑝↾B, and

𝑋 a KLMN-state of 𝑝 ⊛𝜑 𝑞, with t an alternating linearisation of

𝑋 ↾ A,C.

Then 𝑋 has a linearisation t following the diagram of Figure 6.11

(where 𝑎+ is an event occuring in A and with polarity + in A), such

that t↾ A,C = t, and we are in one of the following cases:

1. 𝑋 ↾ A,C is an O-state. Then 𝑋 is an OOOO-state.

2. 𝑋 ↾ A,C is a P-state. Then we have three cases:

a) 𝑋 is a PPOO-state.

b) 𝑋 is a POPO-state.

c) 𝑋 is a POOP-state.

Proof. We prove the lemma by induction on the size of 𝑋. If 𝑋 is

empty, it is an OOOO-state. Otherwise:

1. If 𝑋 ↾ A,C is an O-state, consider 𝑒 = max(t). Since 𝑋 ↾ A,C
is an O-state, 𝑒 must be positive in A ⊢ C. By courtesy, 𝑒 is

maximal in 𝑋. Indeed, assume 𝑒 is not maximal in 𝑋, then

there exists 𝑏 ∈ 𝑋 such that 𝑒 _◁∗ 𝑏 with 𝑒+ occuring in A
or C and 𝑏− occuring in B, contradiction. So 𝑋\{𝑒} ↾ A,C is

a P-state, and by induction we are in the second case of the

lemma.

a) If 𝑒 occurs in A, then 𝑋\{𝑒} ↾ A, B𝑞 is a P-state, and by

I.H. 𝑋\{𝑒} is a PPOO-state. Hence, 𝑋 is an OOOO-state.

b) If 𝑒 occurs in C, then 𝑋\{𝑒} ↾ B𝑝 ,C is a P-state, and by

H.I. 𝑋\{𝑒} is a POOP-state. Hence, 𝑋 is an OOOO-state.

2. If 𝑋 ↾ A,C is a P-state, consider 𝑒 = max(t).
a) If 𝑒 is also maximal in𝑋 and occurs in A, then 𝑒 is negative

in A ⊢ C, i.e. positive in A, and 𝑋\{𝑒} ↾ A,C is an O-state.

By induction hypothesis, 𝑋\{𝑒} is an OOOO-state. So 𝑋

is a PPOO-state.

b) If 𝑒 is also maximal in𝑋 and occurs in C, then 𝑒 is negative

in A ⊢ C, i.e. negative in C, and 𝑋\{𝑒} ↾A,C is an O-state.

By induction hypothesis, 𝑋\{𝑒} is an OOOO-state. So 𝑋

is a POOP-state.

c) If 𝑒 isn’t maximal in 𝑋, then there exists a 𝑏 maximal in

𝑋, such that 𝑒 ◁∗ 𝑏 and 𝑏 occurs in 𝑋.

i. If 𝑏 is negative in B and occurs in B𝑞 , then it is



6.5 From qualitative PCG to HO 143

negative in A ⊢ B and positive in B𝑞 ⊢ B𝑝 . So, by

induction hypothesis, 𝑋\{𝑏} ↾ A, B𝑞 is an O-state

and 𝑋\{𝑏} ↾ B𝑞 , B𝑝 is a P-state, which means 𝑋\{𝑏}
is a POPO-state. So 𝑋 is a PPOO-state.

ii. If 𝑏 is negative in B and occurs in B𝑝 , then it is

negative in B𝑞 ⊢ B𝑝 and positive in B𝑝 ⊢ C. So, by

induction hypothesis, 𝑋\{𝑏} ↾ B𝑞 , B𝑝 is an O-state

and 𝑋\{𝑏} ↾ B𝑝 ,C is a P-state, which means 𝑋\{𝑏}
is a POOP-state. So 𝑋 is a POPO-state.

iii. If 𝑏 is positive in B and occurs in B𝑞 , then it is

positive in A ⊢ B and negative in B𝑞 ⊢ B𝑝 . So, by

induction hypothesis, 𝑋\{𝑏} ↾ A, B𝑞 is a P-state and

𝑋\{𝑏} ↾ B𝑞 , B𝑝 is an O-state, which means 𝑋\{𝑏} is

a PPOO-state. So 𝑋 is a POPO-state.

iv. If 𝑏 is positive in B and occurs in B𝑝 , then it is

positive in B𝑞 ⊢ B𝑝 and negative in B𝑝 ⊢ C. So, by

induction hypothesis,𝑋\{𝑏}↾B𝑞 , B𝑝 is a 𝑃-state and

𝑋\{𝑏} ↾ B𝑝 ,C is an O-state, which means 𝑋\{𝑏} is

a POPO-state. So 𝑋 is a POOP-state.

In each case, we can check that the inductively constructed lineari-

sation t follows Figure 6.11 and that t↾ A,C = t.

Now we prove the reverse inclusion of Proposition 6.69.

Lemma 6.77 – Plays⇒(−) and composition, part 2

Consider A, B and C arenas with 𝜎 : A ⊢ B and 𝜏 : B ⊢ C. Then:

Plays⇒(𝜏 ⊙ 𝜎) ⊆ Plays⇒(𝜏) ⊙HO Plays⇒(𝜎) .

Proof. Consider 𝑠 ∈ Plays⇒(𝜏 ⊙ 𝜎). By definition there exist

p ∈ 𝜎, 𝑝 = p, r ∈ 𝜏, 𝑟 = r, 𝜑 : 𝑥𝑝↾B �B 𝑥𝑟↾B ,

with 𝑞 = Λ⇒(𝑟 ⊙𝜑 𝑝) and t ∈ Alt(𝑞), such that 𝑠 = 𝜕𝑞(t). We want to

prove that

𝑠 ∈ Plays⇒(𝜏) ⊙HO Plays⇒(𝜎).

More precisely we need plays 𝑠𝜎 ∈ Plays(Λ⇒(p)) and 𝑠𝜏 ∈ Plays(Λ⇒(r)),
along with an interaction 𝑢 ∈ I(A, B,C) such that

𝑢 ↾ A, B = 𝑠𝜎 , 𝑢 ↾ B,C = 𝑠𝜏 , 𝑢 ↾ A,C = 𝑠.

This interaction will be constructed thanks to Lemma 6.76. Consider

𝑋 = |Λ⇒(𝑟 ⊛𝜑 𝑝)| = |𝑟 ⊛𝜑 𝑝|

Then 𝑋 is an OOOO-state of 𝑟 ⊛𝜑 𝑝, and t is an alternating lin-

earisation of 𝑋 ↾ A,C (since Λ⇒(−) does not change polarities). By

Lemma 6.76, there exists a linearisation t, following the diagram of

Figure 6.11, such that t↾ A,C = t. Since t follows the state diagram

(and ∅, 𝑋 are OOOO-states), events in B must occur in pairs: any

event (1, 𝑏) occuring in B+𝑝 is followed by (2, 𝜑(𝑏)) occuring in B𝑟 ,
and likewise any event (2, 𝑏) occuring in B−𝑟 is followed by (1, 𝜑−1(𝑏))



144 6 Composition and Categorical Structure

occuring in B𝑝 . Hence, we construct t′ where we consider pairs of

events occuring in B, and the corresponding interaction 𝑢, where

pointers follow _Λ⇒(𝑝) and _Λ⇒𝑟 . By construction, we have:

𝑢 ↾A, B ∈ Plays(Λ⇒(p)) 𝑢 ↾B,C ∈ Plays(Λ⇒(r)) 𝑢 ↾A,C = 𝑠

as required.

Hence Plays⇒(−) is compatible with the compositions. Since the com-

position in HO games preserves innocence, we can deduce that the

composition in PCG also preserves innocence (i.e. being a FII).

6.5.5 Functor between PCG and HO

We are now able to properly state the correspondance between the two

categories FII the category of FIIs in PCG and HOInn
𝑓

the category of finite

innocent strategies in HO.

Proposition 6.78 – Functor between PCG and HO

There is a functor:

Plays⇒(−) : FII→ HOInn
𝑓 .

Proof. For any 𝜎 ∈ FII(A ⊢ B), we have Plays⇒(𝜎) ∈ HOInn
𝑓
(A⇒ B)

by Lemma 6.67 and Proposition 3.47.Remark: Proposition 3.47 actually gives

us the isomorphism for plays quotiented

by homotopy, but since Plays⇒(−) re-

turns plays we drop the quotient here.

We conclude with Proposi-

tions 6.68 and 6.69 for identity and composition respectively.

The construction for the general functor between PCG and possibly

infinite innocent strategies is not detailed here. The idea is to define

infinite augmentations and isogmentations (again, one can think of them

as infinite “trees of P-views”) and then work mostly with finite prefixes

of infinite augmentations; hence the actual proofs are not so different.

Cartesian Structure. Recall that in PCG, for any arenas A and B, the

projections 𝜋A and 𝜋B are strategies with a copycat-like behavior on

A ⊗ B ⊢ A and A ⊗ B ⊢ B. They correspond exactly to 𝜋HO
A and 𝜋HO

B .

Lemma 6.79 – Preservation of projections

For any arenas A, B, we have:

Plays⇒(𝜋A) = 𝜋HO
A and Plays⇒(𝜋B) = 𝜋HO

B .

The proof is very similar to the one for Proposition 6.68.

Closed Structure. Recall the isomorphism in PCG:

ΛA,B,C : PCG(A ⊗ B,C) � PCG(A, B⇒ C) .



6.6 Conclusion and perspectives 145

Likewise, in HO the currying isomorphism is:

ΛHO
A,B,C : HO(A ⊗ B,C) � HO(A, B⇒ C) ,

We show that Plays⇒(−) is compatible with the curryfication.

Lemma 6.80 – Preservation of curryfication

For any 𝜎 : A ⊗ B ⊢ C, we have:

Plays⇒(ΛA,B,C(𝜎)) = ΛHO
A,B,C(Plays⇒(𝜎)) .

Proof. By computation; both curryfication morphisms behave in

the same way.

Recall that the evaluation in PCG is defined by:

evA,B
def

= Λ−1

A⇒B,A,B (idA⇒B) ∈ PCG((A⇒ B) ⊗ A, B) .

Likewise, the evaluation in HO is:

evHO
A,B

def

=

(
ΛHO

A⇒B,A,B

)−1 (
ccHO

A⇒B
)
∈ HO((A⇒ B) ⊗ A, B) .

From the previous lemmas, we directly obtain:

Plays⇒(evA,B) = evHO
A,B .

All in all, we have a strict cartesian closed functor.

Theorem 6.81 – Strict cartesian closed functor

Plays⇒(−) is a strict cartesian closed functor between FII and HOInn
𝑓

.

6.6 Conclusion and perspectives

We enriched the game model PCG with composition, allowing us to study

its categorical structure. For now, we showed that PCG is a SMCC – in

the next chapter we define resource categories, which are better suited to

express what interest us in the structure of PCG.

We also established a strict cartesian closed functor between PCG and HO,

building upon the isomorphisms from Chapter 3. This correspondance

only focuses on the qualitative aspect of PCG; the natural follow-up

question would be about the significance of the coefficients in HO.





Resource Categories 7
7.1 Definition . . . . . . . . . 147
7.2 Properties of resource

categories . . . . . . . . . 151
7.3 Interpretation and

Soundness . . . . . . . . 158
7.4 How to build your own

resource category . . . . 165
7.5 Conclusion and perspec-

tives . . . . . . . . . . . . 172

Resource categories intend to capture the categorical structure of pointer
concurrent games. The aim is to obtain a categorical framework enabling

the characterization of morphisms behaving “linearly”, to show that these

morphisms in pointer concurrent games are in bĳection with normal

terms of the resource 𝜆-calculus; and also to structure the interpretation of

resource terms as strategies, to prove invariance under reduction.

We start by giving the definition in Section 7.1, as well as some useful

properties in Section 7.2. We focus on the interpretation and its soundness

in Section 7.3 – in Chapter 8 we will prove that PCG is indeed a resource

category. Finally we give an example of the construction of a resource

category from a differential category (more exactly a monoidal storage

category) in Section 7.4.

7.1 Definition

Before the actual definition, we give some of the intuitions behind the

main components of a resource category:

▶ Composition in games generates sums of isogmentations; likewise,

substitution in the resource calculus generates sums of terms.

Hence, resource categories have an additive structure.

▶ Resource terms are built using multisets of terms; we would like a

way to “flatten” multisets of morphisms into one morphism. This

operation is constructed via a bialgebra structure.

▶ Resource categories are not linear, because strategies, the mor-

phisms in pointer concurrent games, do not have a linear behavior

in general. However, we want to characterize the morphisms that

do behave linearly – because they correspond to resource terms.

This is achieved using the pointed identities morphisms.

7.1.1 Additivity

We call additive categories that are enriched over commutative monoids
1

1: We follow the definition of [7, Sec-

tion 2]

[7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

, which differs from the one given

in [32]

[32]: Mac Lane (1971), Categories for the
Working Mathematician

.

.

Definition 7.1 – Additive SMC (ASMC)

An additive symmetric monoidal category (asmc) is a symmetric

monoidal category (see Definition 1.2) where each hom-set is a

commutative monoid, with an addition + and a zero 0, such that

composition and tensor distribute over the additive structure:

ℎ ◦ ( 𝑓 + 𝑔) ◦ 𝑘 = ℎ ◦ 𝑓 ◦ 𝑘 + ℎ ◦ 𝑔 ◦ 𝑘 ℎ ◦ 0 ◦ 𝑘 = 0

ℎ ⊗ ( 𝑓 + 𝑔) ⊗ 𝑘 = ℎ ⊗ 𝑓 ⊗ 𝑘 + ℎ ⊗ 𝑔 ⊗ 𝑘 ℎ ⊗ 0 ⊗ 𝑘 = 0

for any morphisms 𝑘, 𝑓 , 𝑔, ℎ.



148 7 Resource Categories

𝜇𝐴

𝛿𝐴

=

𝛿𝐴 𝛿𝐴

𝜇𝐴 𝜇𝐴

𝜂𝐴

𝛿𝐴

=

𝜂𝐴 𝜂𝐴

(a) Multiplication and co-multiplication. (b) Unitor and co-multiplication.

𝜇𝐴

𝜀𝐴

=

𝜀𝐴 𝜀𝐴

𝜂𝐴

𝜀𝐴

=

(c) Multiplication and co-unitor. (d) Unitor and co-unitor.

Figure 7.1: Bialgebra laws.

2: The name pointed identity comes from

the particular case of pointed identities

in the resource category of pointer con-

current games: tree-like augmentations

corresponding to linear morphisms in

games are called pointed, because their

forestial structure has a unique root.

7.1.2 Bialgebras.

Resource categories are equipped with bialgebras, which are a monoid

and a comonoid with coherence laws between the two structures.

Definition 7.2 – Bialgebra

Consider 𝐶 an additive symmetric monoidal category.

A bialgebra on 𝐶 is (𝐴, 𝛿𝐴 , 𝜀𝐴 , 𝜇𝐴 , 𝜂𝐴)with

▶ (𝐴, 𝜇𝐴 , 𝜂𝐴) a commutative monoid (see Definition 1.5),

▶ (𝐴, 𝛿𝐴 , 𝜀𝐴) a commutative comonoid (see Definition 1.7),

▶ and additional bialgebra laws presented in Figure 7.1.

In resource categories, every object has a bialgebra structure. Intuitively,

comonoids (𝐴, 𝛿𝐴 , 𝜂𝐴) are a way to represent duplications and duplicable

objects: if a request is made on the output of 𝛿𝐴 on either side of the

tensor, the request is forwarded to its input. Monoids (𝐴, 𝜇𝐴 , 𝜀𝐴) reflect

the sums coming from compositions of strategies: requests made on the

output of 𝜇𝐴 are forwarded non-deterministically to its input on either

side of the tensor.

7.1.3 Pointed Identity

Finally, we wish to characterize morphisms that “behave linearly” (in

pointer concurrent game, they correspond to singleton multisets of tree-

like augmentations, using their argument exactly once). To do so, we

introduce a morphism called pointed identity, which acts as an identity

only for “linear morphisms”2
.



7.1 Definition 149

id•
𝐴

𝛿𝐴

= id•
𝐴

𝜂𝐴 + id•
𝐴

𝜂𝐴

id•
𝐴

𝜇𝐴

= id•
𝐴

𝜀𝐴 + id•
𝐴

𝜀𝐴

Figure 7.2: Laws for (co)multiplication and pointed identity

Definition 7.3 – Pointed identity

Consider C an asmc where each object has a bialgebra structure.

For any 𝐴, a pointed identity is id•
𝐴
∈ C(𝐴, 𝐴) satisfying:

idempotent: id•
𝐴
◦ id•

𝐴
= id•

𝐴

non-erasable: 𝜀𝐴 ◦ id•
𝐴
= 0

non-erasing: id•
𝐴
◦ 𝜂𝐴 = 0

and the equations of Figure 7.2.

The equations of Figure 7.2 express the following properties of id•
𝐴

:

▶ non-duplicable: the post-composition with the co-multiplication 𝛿𝐴 is

the sum of “id•
𝐴

takes a request from the left-hand side of the tensor”

and “id•
𝐴

takes a request from the right-hand side”, but no situation

in which id•
𝐴

takes requests from both sides simultaneously;

▶ non-duplicative: the pre-composition with the multiplication 𝜇𝐴 is

the sum of “id•
𝐴

forwards a request to the left-hand side of the

tensor” and “id•
𝐴

forwards a request to the right hand side” but no

“id•
𝐴

forwards the request to both sides”.

This “strongly linear” behavior of id• will allow us to characterize linear

morphisms: those which are invariant by composition with the pointed

identity.

Definition 7.4 – (Co-)Pointed Morphisms

Consider 𝐴, 𝐵 in an asmc C equipped with bialgebras, and the

pointed identities id•
𝐴

and id•
𝐵
.

Then 𝑓 ∈ C(𝐴, 𝐵) is pointed if id•
𝐵
◦ 𝑓 = 𝑓 . We write 𝑓 ∈ C•(𝐴, 𝐵).

Dually, 𝑓 is co-pointed if 𝑓 ◦ id•
𝐴
= 𝑓 . We write 𝑓 ∈ C•(𝐴, 𝐵).

Intuitively, pointed morphisms are morphisms behaving linearly for

the substitution: they can only be used exactly once. Dually, co-pointed

morphisms are morphisms behaving linearly with their arguments: they

require exactly one resource.

7.1.4 Resource Categories

We can now define resource categories.



150 7 Resource Categories

𝛿

𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

= 𝛿 𝛿

𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

𝜇

𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

= 𝜇 𝜇

𝐴 𝐵 𝐴 𝐵

𝐴 𝐵

Figure 7.3: Compatibility of (co)monoids with the monoidal structure

Definition 7.5 – Resource Category

Consider an asmc C. It is a resource category if each object 𝐴 has a

bialgebra structure (𝐴, 𝛿𝐴 , 𝜀𝐴 , 𝜇𝐴 , 𝜂𝐴)with a pointed identity id•
𝐴

,

and bialgebras are compatible with the monoidal structure of C in

the sense that the morphisms satisfy:

co-unitor with tensor: 𝜀𝐴⊗𝐵 = 𝜆𝐼 ◦ (𝜀𝐴 ⊗ 𝜀𝐵)
unitor with tensor: 𝜂𝐴⊗𝐵 =

(
𝜂𝐴 ⊗ 𝜂𝐵

)
◦ 𝜆𝐼

(co-)unitors with unit: 𝜀𝐼 = 𝜂𝐼 = id𝐼

and the equations of Figure 7.3.

Resource categories offer an interpretation of the resource calculus, in

which (singleton multisets of) terms are pointed morphisms. Linearity

here is characterized using pointed identities; but linearity can also be

linked to differential categories. Pointed identity laws are very similar

to the dereliction and codereliction morphisms laws which occur in

differential categories, which will guide us in our construction of a

resource category in Section 7.4.

7.1.5 Closeness

Since we are interested in interpreting typed 𝜆-terms, we want some kind

of currying isomorphism. Hence we consider closed resource categories.

Definition 7.6 – Closed resource category

A resource category C is closed if for all 𝐴 ∈ C, the endofunctor

− ⊗ 𝐴 has a right adjoint 𝐴⇒ −.

The currying is the natural (in 𝐴, 𝐵, 𝐶) isomorphism:

Λ𝐴,𝐵,𝐶 : C(𝐴 ⊗ 𝐵, 𝐶) � C(𝐴, 𝐵⇒ 𝐶) .

For all 𝐴, 𝐵, the evalutation morphism is:

ev𝐴,𝐵
def

= Λ−1

𝐴⇒𝐵,𝐴,𝐵 (id𝐴⇒𝐵) .

We ask that the currying isomorphism is compatible with pointed

identity in the following sense, for all 𝐴, 𝐵:

id•𝐴⇒𝐵 = Λ𝐴⇒𝐵,𝐴,𝐵
(
id•𝐵 ◦ ev𝐴,𝐵

)
.



7.2 Properties of resource categories 151

𝑓 ∗ 𝑔 =

𝐴

𝛿𝐴

𝑓 𝑔

𝜇𝐵

𝐵

Figure 7.4: Union.

⟨⟨⟨ 𝑓 , 𝑔⟩⟩⟩ =

𝐴

𝛿𝐴

𝑓 𝑔

𝐵 𝐶

Figure 7.5: Tupling.

7.2 Properties of resource categories

7.2.1 Constructions

We first give a few additionnal constructions in resource categories,

which will be useful both for the interpretation of resource calculus and

for describing the categorical structure of PCG.

Union. Strategies in pointer concurrent games are sums of augmenta-

tions, and augmentations have a forestial structure: they are, in a way,

finite multisets of tree-like sub-augmentations. This matches the fact that

in resource calculus, terms are applied to multisets of terms instead of

terms. Bialgebra morphisms allow us to formalize this intuition and to

flatten any multiset of morphisms into a single morphism.

For any morphisms 𝑓 , 𝑔 : 𝐴→ 𝐵, we define their union as:

𝑓 ∗ 𝑔 def

= 𝜇𝐵 ◦ ( 𝑓 ⊗ 𝑔) ◦ 𝛿𝐴 ∈ C(𝐴, 𝐵) ,

capturing the idea of the union of the multisets 𝑓 and 𝑔.

Moreover, we define the union of the empty multiset as:

1𝐴,𝐵
def

= 𝜂𝐵 ◦ 𝜀𝐴 ∈ C(𝐴, 𝐵) .

With these definitions, (C(𝐴, 𝐵), ∗, 1𝐴,𝐵) is a commutative monoid (and

C(𝐴, 𝐵) is a commutative semiring, where the composition and the

tensor only preserve the additive monoid).

Since ∗ is associative, we unambiguously define the 𝑛-ary union: given a

multiset of morphisms 𝑓 = [ 𝑓1 , . . . , 𝑓𝑛] in M𝑓 (C(𝐴, 𝐵)), we set:

Π 𝑓 = 𝑓1 ∗ . . . ∗ 𝑓𝑛 ∈ C(𝐴, 𝐵) .

Hence, we send multisets of morphisms to single morphisms via Π.

Remark that this construction matches ΠIsog[−], the “flattening” of a mul-

tiset of isogmentations on the same arena into a single isogmentation.

Tupling. Likewise, we would like a construction matching ⟨−⟩Isog, the

tupling of a sequence of isogmentations on some arenas Γ ⊢ A𝑖 ’s into an

isogmentation on the arena Γ ⊢ ®A⊗.

For any objects 𝐴, 𝐵, 𝐶 with morphisms 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐴→ 𝐶, we

define their tupling:

⟨⟨⟨ 𝑓 , 𝑔⟩⟩⟩ def

= ( 𝑓 ⊗ 𝑔) ◦ 𝛿𝐴 ∈ C(𝐴, 𝐵 ⊗ 𝐶) .

This ressembles the product in cartesian categories; in the same way, we

define the tupling projections:

𝜋ℓ
def

= 𝜌𝐴 ◦ (id𝐴 ⊗ 𝜀𝐵) ∈ C(𝐴 ⊗ 𝐵, 𝐴)
𝜋𝓇

def

= 𝜆𝐵 ◦ (𝜀𝐴 ⊗ id𝐵) ∈ C(𝐴 ⊗ 𝐵, 𝐵)



152 7 Resource Categories

In case of ambiguity, we write (𝜋𝐴,𝐵
ℓ

,𝜋𝐴,𝐵𝓇 ). We might also occasionally

use the notations (𝜋1 ,𝜋2) or (𝜋𝐴 ,𝜋𝐵).

However, this is not a cartesian product! We do not have 𝜋ℓ ◦ ⟨⟨⟨ 𝑓 , 𝑔⟩⟩⟩ = 𝑓

in general – indeed, this only holds if 𝑔 is erasable, i.e. if 𝜀𝐶 ◦ 𝑔 = 𝜀𝐴.

Likewise, ⟨⟨⟨ 𝑓 , 𝑔⟩⟩⟩ ◦ ℎ = ℎ only holds if ℎ ∈ C(𝐷, 𝐴) is duplicable, i.e. if

𝛿𝐴 ◦ ℎ = (ℎ ⊗ ℎ) ◦ 𝛿𝐷 (see Subsection 7.2.3).

Again, we extend the definition to the 𝑛-ary tupling; given morphisms

( 𝑓𝑖 : 𝐴→ 𝐵𝑖)
1≤𝑖≤𝑛 , we set:

⟨⟨⟨ 𝑓1 , . . . , 𝑓𝑛⟩⟩⟩
def

= ⟨⟨⟨ 𝑓1 , ⟨⟨⟨ 𝑓2 , . . . , 𝑓𝑛⟩⟩⟩⟩⟩⟩ ∈ C(𝐴, 𝐵1 ⊗ . . . ⊗ 𝐵𝑛)

with the projections 𝜋𝑖 ’s constructed in the obvious way.

Packing. In the next section, sequences and bags are interpreted as

actual tuples and multisets rather than directly as morphisms in C. To

compose bags we “flatten” them via the union; likewise for sequences

of morphisms we might use the tupling to see the sequence as a single

morphism. Putting these two construction together, we define the packing
of a sequence of bags of morphisms. Given the sequence

®𝑓 := ⟨ 𝑓1 , . . . , 𝑓𝑛⟩
with multiset 𝑓𝑖 ∈M𝑓 (C(𝐴, 𝐵𝑖))) for any 1 ≤ 𝑖 ≤ 𝑛, we set:

⟨| ®𝑓 |⟩ def

= ⟨⟨⟨Π 𝑓1 , . . . ,Π 𝑓𝑛⟩⟩⟩ ∈ C(𝐴, 𝐵1 ⊗ . . . ⊗ 𝐵𝑛) .

7.2.2 Bags of pointed morphisms

One of the key properties of resource calculus is the fact that the sub-

stitution creates sums of resource terms, following the multiple ways of

splitting a bag of terms. In resource categories, terms are interpreted as

pointed morphisms, and bags of terms as bags of pointed morphisms,

flattened via the union operation when needed. Hence, we need to study

the categorical equivalent of splitting a bag of terms: how does the union

of a bag of pointed morphisms behave when we try to “split” it into two

(or several) morphisms?

The key property derived from the definition of resource categories

expresses how the product of a bag of pointed morphisms interacts with

the comonoid structure – and dually for product of a bag of co-pointed

morphisms and monoids.

Lemma 7.7 – Key Lemma

Consider Ca resource category, then:

1. For any bag of pointed morphisms 𝑓 ∈M𝑓 (C•(𝐴, 𝐵)),
a) the diagram of Figure 7.6a commutes;

b) we have 𝜀𝐵 ◦Π 𝑓 = 1 if 𝑓 is empty, 0 otherwise.

2. For any bag of co-pointed morphisms 𝑔̄ ∈M𝑓 (C•(𝐴, 𝐵)),
a) the diagram of Figure 7.6b commutes;

b) we have Π𝑔̄ ◦ 𝜂𝐴 = 1 if 𝑔̄ is empty, 0 otherwise.



7.2 Properties of resource categories 153

𝐴 𝐴 ⊗ 𝐴

𝐵 𝐵 ⊗ 𝐵

𝛿𝐴

𝛿𝐵

Π 𝑓
∑
𝑓◁ 𝑓1∗ 𝑓2 Π 𝑓1 ⊗ Π 𝑓2

(a) Pointed morphisms and comultiplication.

𝐴 ⊗ 𝐴 𝐴

𝐵 ⊗ 𝐵 𝐵

𝜇𝐴

𝜇𝐵

Π𝑔̄
∑
𝑔̄◁𝑔̄1∗𝑔̄2

Π𝑔̄1 ⊗ Π𝑔̄2

(b) Copointed morphisms and multiplication.

Figure 7.6: Interaction of bags with the (co-)monoid structure.

Proof. 1. Consider a bag of pointed morphisms 𝑓 ∈M𝑓 (C•(𝐴, 𝐵)).
a) We reason by induction on the size of 𝑓 .

If 𝑓 is empty, then by definition Π 𝑓 = 𝜂𝐵 ◦ 𝜀𝐴. Moreover, the only

2-partitioning of [] is [] ◁ [] ∗ []. Hence, we have:∑
𝑓◁ 𝑓1∗ 𝑓2

Π 𝑓1 ⊗ Π 𝑓2 = Π[] ⊗ Π[] =
(
𝜂𝐵 ◦ 𝜀𝐴

)
⊗

(
𝜂𝐵 ◦ 𝜀𝐴

)
. (7.1)

Using bialgebra laws (Figure 7.1), we compute:

Π 𝑓

𝛿𝐵

=

𝜀𝐴

𝜂𝐵

𝛿𝐵

=

𝜀𝐴

𝜂𝐵 𝜂𝐵

=

𝛿𝐴

𝜀𝐴 𝜀𝐴

𝜂𝐵 𝜂𝐵

And by (7.1), we obtain exactly the diagram of Figure 7.6a.

If 𝑓 = [ 𝑓1 , . . . , 𝑓𝑛]with 𝑛 ≥ 1, let us write ℎ̄ = [ 𝑓2 , . . . , 𝑓𝑛].
Then Π 𝑓 = 𝑓1 ∗Πℎ̄, and we compute:

Π 𝑓

𝛿𝐵

=

𝛿𝐴

𝑓1 Πℎ̄

𝜇𝐵

𝛿𝐵

=

𝛿𝐴

𝑓1 Πℎ̄

𝛿𝐵 𝛿𝐵

𝜇𝐵 𝜇𝐵

=

𝛿𝐴

𝑓1

id•
𝐵

Πℎ̄

𝛿𝐵 𝛿𝐵

𝜇𝐵 𝜇𝐵

using the exchange rule of bialgebra (Figure 7.1) and the fact that 𝑓1
is pointed.



154 7 Resource Categories

From the laws of pointed identities (Figure 7.2), we get:

𝛿𝐴

𝑓1

id•
𝐵

Πℎ̄

𝛿𝐵 𝛿𝐵

𝜇𝐵 𝜇𝐵

=

𝛿𝐴

𝑓1

id•
𝐵

Πℎ̄

𝜀𝐵

𝛿𝐵

𝜇𝐵 𝜇𝐵

+

𝛿𝐴

𝑓1

id•
𝐵

Πℎ̄

𝜀𝐵

𝛿𝐵

𝜇𝐵 𝜇𝐵

= ★

Using the fact that 𝑓1 is pointed and a bialgebra law (Figure 7.1), we

simplify this sum to:

★ =

𝛿𝐴

𝑓1

Πℎ̄

𝛿𝐵

𝜇𝐵

+
𝛿𝐴

𝑓1

Πℎ̄

𝛿𝐵

𝜇𝐵

Now, by induction hypothesis, we can replace 𝛿𝐵◦Πℎ̄ in the diagram

above, and by additivity we get:

★ =
∑
ℎ̄◁ℎ̄1∗ℎ̄2

©­­­­­­­­­«

𝛿𝐴

𝛿𝐴

𝑓1

Πℎ̄1 Πℎ̄2

𝜇𝐵

+

𝛿𝐴

𝛿𝐴

𝑓1

Πℎ̄1 Πℎ̄2

𝜇𝐵

ª®®®®®®®®®¬
By associativity and symmetry of 𝛿, this rewrites to:

★ =
∑
ℎ̄◁ℎ̄1∗ℎ̄2

©­­­­­­­­­«

𝛿𝐴

𝛿𝐴

𝑓1 Πℎ̄1 Πℎ̄2

𝜇𝐵

+

𝛿𝐴

𝛿𝐴

𝑓1Πℎ̄1 Πℎ̄2

𝜇𝐵

ª®®®®®®®®®¬
By definition of the union, this is exactly:

★ =
∑
ℎ̄◁ℎ̄1∗ℎ̄2

©­­­­­«
𝛿𝐴

𝑓1 ∗Πℎ̄1 Πℎ̄2

+
𝛿𝐴

Πℎ̄1
𝑓1 ∗Πℎ̄2

ª®®®®®¬



7.2 Properties of resource categories 155

Therefore, following the definition of a 2-partitioning, we have:

★ =
∑
𝑓◁ 𝑓1∗ 𝑓2

©­­­­«
𝛿𝐴

Π 𝑓1 Π 𝑓2

ª®®®®¬
which is exactly the diagram from Figure 7.6a.

b) If 𝑓 is empty, we have:

𝜀𝐵 ◦Π 𝑓 = 𝜀𝐵 ◦ 𝜂𝐵 ◦ 𝜀𝐴
= id𝐼 ◦ 𝜀𝐴
= 1𝐴,𝐼

by definition of the union on the empty multiset; a bialgebra law

(Figure 7.1); and a coherence law of resource categories.

Otherwise, writing 𝑓 as [ 𝑓1 , . . . , 𝑓𝑛], we haveΠ 𝑓 = 𝑓1 ∗Π[ 𝑓2 , . . . , 𝑓𝑛].
Writing ℎ = Π[ 𝑓2 , . . . , 𝑓𝑛], we obtain:

𝜀𝐵 ◦Π 𝑓 = 𝜀𝐵 ◦
(
𝑓1 ∗ ℎ

)
= 𝜀𝐵 ◦ 𝜇𝐵 ◦

(
𝑓1 ⊗ ℎ

)
◦ 𝛿𝐴

= (𝜀𝐵 ⊗ 𝜀𝐵) ◦
(
𝑓1 ⊗ ℎ

)
◦ 𝛿𝐴

=
(
𝜀𝐵 ◦ 𝑓1

)
⊗ (𝜀𝐵 ◦ ℎ) ◦ 𝛿𝐴

=
(
𝜀𝐵 ◦ id•𝐵 ◦ 𝑓1

)
⊗ (𝜀𝐵 ◦ ℎ) ◦ 𝛿𝐴

= 0.

by definition of the union; a bialgebra law; bifunctoriality of ⊗;

the fact that 𝑓1 is pointed; and the fact that the pointed identity is

non-erasable.

2. Completely symmetric to 1.

We also describe the interactions of (unions of) bags of pointed morphisms

with pointed identities.

Lemma 7.8 – Interaction of bags with id•

Consider 𝑓 ∈M𝑓 (C•(𝐴, 𝐵)). Then:

id•𝐵 ◦Π 𝑓 =

{
𝑔 if 𝑓 = [𝑔] ,
0 otherwise.

Proof. If 𝑓 = [𝑔], we clearly have

id•𝐵 ◦Π[𝑔] = id•𝐵 ◦ 𝑔 = 𝑔

since 𝑔 is pointed.



156 7 Resource Categories

Otherwise, if 𝑓 = [ ], then Π 𝑓 = 1𝐴,𝐵 = 𝜂𝐵 ◦ 𝜀𝐴, and we compute:

id•𝐵 ◦Π 𝑓 = id•𝐵 ◦ 𝜂𝐵 ◦ 𝜀𝐴 = 0 ◦ 𝜀𝐴 = 0

by non-erasing property of pointed identity.

Finally, if 𝑓 has at least two elements, we can write Π 𝑓 = 𝑔 ∗ Πℎ̄
with 𝑔 a pointed morphism and ℎ̄ a non-empty bag of pointed

morphisms. We compute:

id•𝐵 ◦
(
𝑔 ∗Πℎ̄

)
= id•𝐵 ◦

(
𝜇𝐵 ◦

(
𝑔 ⊗ Πℎ̄

)
◦ 𝛿𝐴

)
=

{(
id•𝐵 ⊗ 𝜀𝐵

)
◦

(
𝑔 ⊗ Πℎ̄

)
◦ 𝛿𝐴

}
+

{(
𝜀𝐵 ⊗ id•𝐵

)
◦

(
𝑔 ⊗ Πℎ̄

)
◦ 𝛿𝐴

}
=

{(
id•𝐵 ◦ 𝑔

)
⊗

(
𝜀𝐵 ◦Πℎ̄

)
◦ 𝛿𝐴

}
+

{(
𝜀𝐵 ◦ 𝑔

)
⊗

(
id•𝐵 ◦Πℎ̄

)
◦ 𝛿𝐴

}
=

{(
id•𝐵 ◦ 𝑔

)
⊗ 0 ◦ 𝛿𝐴

}
+

{
0 ⊗

(
id•𝐵 ◦Πℎ̄

)
◦ 𝛿𝐴

}
= 0

by definition of the union; non-duplicative property of id•; bifuncto-

riality of ⊗; Lemma 7.7 for the first term and pointedness of 𝑔 with

non-erasive property of id• for the second one; and asmc laws.

7.2.3 Comonoid morphisms

As observed in the previous pages, resource categories are not cartesian:

although tupling shares some similarities with a cartesian product, it

does not behave like one in general. However, some particular morphisms

do behave as is usual in a cartesian category: comonoid morphisms.

Definition 7.9 – Comonoid morphism

A morphism 𝑓 ∈ C(𝐴, 𝐵) is a comonoid morphism if:

𝛿𝐵 ◦ 𝑓 =
(
𝑓 ⊗ 𝑓

)
◦ 𝛿𝐴 and 𝜀𝐵 ◦ 𝑓 = 𝜀𝐴 .

Of course, identities are comonoid morphisms. It follows from a simple

diagram chasing that the projections also are, as well as 1.

Moreover, comonoid morphisms are closed under composition.

Remark: Morphisms obtained by the interpretation of resource terms

are never comonoid morphisms, but structural morphisms used in the

interpretation always are.



7.2 Properties of resource categories 157

Lemma 7.10 – Comonoid morphism and tupling

Consider 𝑓 ∈ C(𝐴, 𝐵), 𝑔 ∈ C(𝐴, 𝐶) and ℎ ∈ C(𝐷, 𝐴).
1. If 𝑓 is a comonoid morphism, then 𝜋𝓇 ◦ ⟨⟨⟨ 𝑓 , 𝑔⟩⟩⟩ = 𝑔;

2. If 𝑔 is a comonoid morphism, then 𝜋ℓ ◦ ⟨⟨⟨ 𝑓 , 𝑔⟩⟩⟩ = 𝑓 ;

3. If ℎ is a comonoid morphism, then ⟨⟨⟨ 𝑓 , 𝑔⟩⟩⟩ ◦ ℎ = ⟨⟨⟨ 𝑓 ◦ ℎ, 𝑔 ◦ ℎ⟩⟩⟩.

Proof. Straightforward from the definitions.

The analogous properties for 𝑛-ary tupling follow by induction – we

shall also refer to Lemma 7.10 when using these generalizations.

A similar lemma holds for unions.

Lemma 7.11 – Comonoid morphism and union

Consider 𝑓 ∈M𝑓 (C(𝐴, 𝐵)) and ℎ ∈ C(𝐶, 𝐴).
If ℎ is a comonoid morphism, then

(
Π 𝑓

)
◦ ℎ = Π

(
𝑓 ◦ ℎ

)
.

Finally, we state several distribution properties for the composition with

the tupling of a comonoid morphism and a union of pointed morphisms;

which again are direct consequences of the definitions.

Lemma 7.12 – Left-projection and ⟨⟨⟨ℎ,Π 𝑓 ⟩⟩⟩

Consider 𝑓 ∈ M𝑓 (C•(𝐴, 𝐵)) and ℎ ∈ C(𝐴, 𝐵) a comonoid mor-

phism. Then:

𝜋ℓ ◦ ⟨⟨⟨ℎ,Π 𝑓 ⟩⟩⟩ =

{
ℎ if 𝑓 is empty,

0 otherwise.

Lemma 7.13 – Tupling and ⟨⟨⟨ℎ,Π 𝑓 ⟩⟩⟩

Consider 𝑓 ∈ M𝑓 (C•(𝐴, 𝐵)) and ℎ ∈ C(𝐴, 𝐵) a comonoid mor-

phism. If 𝑔1 , . . . , 𝑔𝑛 ∈ C(𝐶, 𝐴), then:

⟨⟨⟨𝑔𝑖 | 1 ≤ 𝑖 ≤ 𝑛⟩⟩⟩ ◦ ⟨⟨⟨ℎ,Π 𝑓𝑖⟩⟩⟩ =
∑

𝑓◁ 𝑓1∗...∗ 𝑓𝑛
⟨⟨⟨𝑔𝑖 ◦ ⟨⟨⟨ℎ,Π 𝑓𝑖⟩⟩⟩ | 1 ≤ 𝑖 ≤ 𝑛⟩⟩⟩ .

Lemma 7.14 – Union and ⟨⟨⟨ℎ,Π 𝑓 ⟩⟩⟩

Consider 𝑓 ∈ M𝑓 (C•(𝐴, 𝐵)) and ℎ ∈ C(𝐴, 𝐵) a comonoid mor-

phism. If 𝑔̄ := [𝑔1 , . . . , 𝑔𝑛] ∈M𝑓 (C(𝐶, 𝐴)), then:

Π𝑔̄ ◦ ⟨⟨⟨ℎ,Π 𝑓𝑖⟩⟩⟩ =
∑

𝑓◁ 𝑓1∗...∗ 𝑓𝑛

∏
1≤𝑖≤𝑛

(
𝑔𝑖 ◦ ⟨⟨⟨ℎ,Π 𝑓𝑖⟩⟩⟩

)
.



158 7 Resource Categories

Remark: Note that this interpretation is

very similar to the one used for PCG,

which will make sens in the following

chapter – where we study PCG as a re-

source category, whose objects are arenas

– since we choose the singleton arena o
as the object 𝑜 and all the other construc-

tions are the same.

7.3 Interpretation and Soundness

7.3.1 Interpretation

From now on, we fix a closed resource category Cwith a chosen object 𝑜.

Types and contexts. We first set:

J𝛼K def

= 𝑜

J⟨𝐴1 , . . . , 𝐴𝑛⟩K
def

= J𝐴1K ⊗ · · · ⊗ J𝐴𝑛K

J𝐴→ 𝐵K def

= J𝐴K⇒ J𝐵K

For contexts, we set JΓK def

=
⊗
(𝑥:𝐴)∈ΓJ𝐴K.

Note that for any type𝐴 := ®𝐵→ 𝛼, currying and associativity morphisms

induce an isomorphism:

𝜁𝐴 : J𝐴K −→ J®𝐵K⇒ 𝑜 .

If (𝑥 : 𝐴) ∈ Γ, we then write

var
Γ
𝑥 : JΓK −→ J®𝐵K⇒ 𝑜

for the projection morphism JΓK→ J𝐴K followed by 𝜁𝐴.

For Γ and Δ disjoint we also use the following isomorphism:

!Γ,Δ : JΓK ⊗ JΔK −→ JΓ,ΔK ,

defined from the symmetric monoidal structure in the obvious way.

Remark that ! is a comonoid morphism.

Terms. The interpretation of terms (or, rather, of typing derivations)

follows the three kinds of judgements from Chapter 5.

Consider Γ, 𝐴 ∈ Cand
®𝐴 := ⟨𝐴1 , . . . , 𝐴𝑛⟩. We define:

▶ TmC(Γ;𝐴) def

= C•(Γ, 𝐴),
▶ BgC(Γ;𝐴) def

= M𝑓 (TmC(Γ;𝐴)),
▶ SqC(Γ;

®𝐴) def

= Π1≤𝑖≤𝑛BgC(Γ;𝐴𝑖).

Remark that sequences and bags are interpreted as actual sequences and

bags at the “meta-level”, rather than via the “internal” bags (i.e. products

of pointed maps) or products (i.e. via the monoidal structure) in C.

This apparent duplication of structure will be resolved when interpreting

applications. For that purpose, in addition to the product Π 𝑓 ∈ C(Γ, 𝐴)
of a bag of morphisms 𝑓 ∈ BgC(Γ;𝐴), we also define the packing of a

sequence of morphisms
®𝑓 := ⟨ 𝑓1 , . . . , 𝑓𝑛⟩ ∈ SqC(Γ;

®𝐴) as:

⟨| ®𝑓 |⟩ def

= ⟨⟨⟨Π 𝑓1 , . . . ,Π 𝑓𝑛⟩⟩⟩ ∈ C(Γ, ®𝐴⊗) .



7.3 Interpretation and Soundness 159

JΓ ⊢Tm 𝜆𝑥.𝑠 : 𝐴→ 𝐵K def

= ΛJΓK,J𝐴K,J𝐵K(JΓ, 𝑥 : 𝐴 ⊢Tm 𝑠 : 𝐵K ◦!JΓK,J𝑥:𝐴K)
JΓ ⊢Tm 𝑥 ®𝑡 : 𝛼K def

= evJ ®𝐴K,J𝛼K ◦ ⟨⟨⟨id
•
J ®𝐴K⇒𝑜

◦ var
Γ
𝑥 , ⟨|JΓ ⊢Sq ®𝑡 :

®𝐴K|⟩⟩⟩⟩

JΓ ⊢Tm 𝑠 𝑡 : 𝐵K def

= evJ𝐴K,J𝐵K ◦ ⟨⟨⟨JΓ ⊢Tm 𝑠 : 𝐴→ 𝐵K,ΠJΓ ⊢Bg 𝑡 : 𝐴K⟩⟩⟩
JΓ ⊢Bg [𝑠1 , . . . , 𝑠𝑛] : 𝐴K def

= [ JΓ ⊢Tm 𝑠𝑖 : 𝐴K | 1 ≤ 𝑖 ≤ 𝑛 ]
JΓ ⊢Sq ⟨𝑠1 , . . . , 𝑠𝑛⟩ :

®𝐴K def

= ⟨ JΓ ⊢Bg 𝑠𝑖 : 𝐴𝑖K | 1 ≤ 𝑖 ≤ 𝑛 ⟩

Figure 7.7: Interpretation of the resource calculus

We now define the three interpretation functions:

▶ J−K : Tm(Γ, 𝐴) −→ TmC(JΓK; J𝐴K),
▶ J−K : Bg(Γ, 𝐴) −→ BgC(JΓK; J𝐴K),
▶ J−K : Sq(Γ, ®𝐴) −→ SqC(JΓK; J ®𝐴K),

all written J−K, by mutual induction as in Figure 7.7.

Remark that by definition, the partitions of J𝑠K coincide with (the inter-

pretations of the elements of) the partitions of 𝑠.

The interpretation is extended to sums of terms:

▶ J−K : ΣTm(Γ;𝐴) −→ ΣTmC(JΓK; J𝐴K)

relying on the additive structure of C. We give no interpretation to sums

of bags or sequences.

Notation: For the sake of brevity, we might omit brackets when using

the interpretation of types, e.g. we write id𝐴 for idJ𝐴K. Likewise, we might

write for example J𝑠K for JΓ ⊢Tm 𝑠 : 𝐴K.

7.3.2 Technical lemmas

Finally, we state some technical results needed for the substitution

lemma.

Lemma 7.15 – Weakening

Consider Γ ⊢Bg 𝑠 : 𝐴. Then, we have:

ΠJΓ, 𝑥 : 𝐵 ⊢Bg 𝑠 : 𝐴K ◦!Γ,(𝑥:𝐵) = ΠJΓ ⊢Bg 𝑠 : 𝐴K ◦ 𝜋ℓ

Proof. Structural induction of the generalised statement for terms,

bags and sequences.

Lemma 7.16 – Variable substitution

Consider a context Γ with (𝑦 : 𝐵) ∈ Γ. Let Δ = Γ, 𝑥 : 𝐴. Then:

(1) var
Δ
𝑥 ◦!Γ,(𝑥:𝐴) = 𝜁𝐴 ◦ 𝜋𝓇 ,

(2) var
Δ
𝑦 ◦!Γ,(𝑥:𝐴) = var

Γ
𝑦 ◦ 𝜋ℓ .

Proof. Direct from the definitions.



160 7 Resource Categories

Lemma 7.17 – Types isomorphism

Consider a type A := ®𝐵→ 𝛼. Then,

𝜁A ◦ id•JAK = id•
J®𝐵K⇒𝑜

◦ 𝜁A .

Proof. From the properties of Λ and ev, and the compatibility of

id• with Λ (see Definition 7.6).

Lemma 7.18 – Interpretation of 𝑠®𝑡

Consider Γ ⊢Tm 𝑠®𝑡 : 𝛼, with Γ ⊢Tm 𝑠 : 𝐴, and 𝐴 := ®𝐵⇒ 𝛼. We have

the following equality:

JΓ ⊢Tm 𝑠®𝑡 : 𝛼K = ev®𝐵,𝛼 ◦ ⟨⟨⟨𝜁𝐴 ◦ J𝑠K, ⟨|J®𝑡K|⟩⟩⟩⟩

Proof. A tedious computation using properties of the structural

morphisms.

7.3.3 Substitution lemma

We show that the interpretation of a substitution in the resource calculus
can be expressed as a substitution in the semantics.

Semantic substitution. The bulk of the proof consists in proving a suit-

able substitution lemma, for which we must first give a semantic account

of substitution. We define three semantic substitution functions:

−⟨⟨−/𝑥⟩⟩ : TmC(JΓ, 𝑥 : 𝐴K; J𝐵K) × BgC(JΓK; J𝐴K) → TmC(JΓK; J𝐵K)
−⟨⟨−/𝑥⟩⟩ : BgC(JΓ, 𝑥 : 𝐴K; J𝐵K) × BgC(JΓK; J𝐴K) → C(JΓK, J𝐵K)
−⟨⟨−/𝑥⟩⟩ : SqC(JΓ, 𝑥 : 𝐴K; J®𝐵K) × BgC(JΓK; J𝐴K) → C(JΓK, J®𝐵K)

using our cartesian-like notations:

𝑓 ⟨⟨𝑔̄/𝑥⟩⟩ def

= 𝑓 ◦!JΓK,J𝑥:𝐴K ◦ ⟨⟨⟨idJΓK ,Π𝑔̄⟩⟩⟩
𝑓 ⟨⟨𝑔̄/𝑥⟩⟩ def

= Π 𝑓 ◦!JΓK,J𝑥:𝐴K ◦ ⟨⟨⟨idJΓK ,Π𝑔̄⟩⟩⟩
®𝑓 ⟨⟨𝑔̄/𝑥⟩⟩ def

= ⟨| ®𝑓 |⟩ ◦!JΓK,J𝑥:𝐴K ◦ ⟨⟨⟨idJΓK ,Π𝑔̄⟩⟩⟩ .

Substitution lemma. We may now state the main lemma:

Lemma 7.19 – Substitution

Consider 𝑡 ∈ Bg(Γ;𝐴), Δ = Γ, 𝑥 : 𝐴 and 𝑠 ∈ Tm(Δ; 𝐵). Then,

J𝑠⟨𝑡/𝑥⟩K = J𝑠K⟨⟨J𝑡K/𝑥⟩⟩ .



7.3 Interpretation and Soundness 161

Proof. We show the result by induction on typing derivation,

proving the stronger statement that for all 𝑡 ∈ Bg(Γ;𝐴) and Δ =

Γ, 𝑥 : 𝐴, we have:

(1) if 𝑠 ∈ Tm(Δ; 𝐵), then J𝑠⟨𝑡/𝑥⟩K = J𝑠K⟨⟨J𝑡K/𝑥⟩⟩;
(2) if 𝑠 ∈ Bg(Δ; 𝐵) and 𝑠⟨𝑡/𝑥⟩ = ∑

1≤𝑖≤𝑛 𝑠𝑖 ,
then

∑
1≤𝑖≤𝑛 ΠJ𝑠𝑖K = J𝑠K⟨⟨J𝑡K/𝑥⟩⟩;

(3) if ®𝑠 ∈ Sq(Δ;
®𝐵) and ®𝑠⟨𝑡/𝑥⟩ = ∑

1≤𝑖≤𝑛 ®𝑠𝑖 ,
then

∑
1≤𝑖≤𝑛⟨|J®𝑠𝑖K|⟩ = J®𝑠K⟨⟨J𝑡K/𝑥⟩⟩;

Remark that the hypothesis for bags and sequences must be stated

carefully: syntax substitution yields sums of bags and sequences

whereas the semantic substitution is not stable under sums.

Case 1. Assume 𝑠 ∈ Tm(Δ; 𝐵). We have three possibilities.

▶ If 𝑠 is an abstraction: We consider Δ ⊢Tm 𝜆𝑦.𝑢 : 𝐶 → 𝐷.

By definition of the substitution, we have:(
𝜆𝑦.𝑢

)
⟨𝑡/𝑥⟩ = 𝜆𝑦. (𝑢⟨𝑡/𝑥⟩) .

Writing Ω for Γ, 𝑦 : 𝐶, we compute:

J𝜆𝑦.𝑢K⟨⟨J𝑡K/𝑥⟩⟩
= J𝜆𝑦.𝑢K ◦!Γ,(𝑥:𝐴) ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

= ΛΔ,𝐶,𝐷

(
JΔ, 𝑦 : 𝐶 ⊢Tm 𝑢 : 𝐷K ◦!Δ,(𝑦:𝐶)

)
◦!Γ,(𝑥:𝐴) ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

= ΛΓ,𝐶,𝐷

(
J𝑢K ◦!Δ,(𝑦:𝐶) ◦

( (
!Γ,(𝑥:𝐴) ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

)
⊗ id(𝑦:𝐶)

))
= ΛΓ,𝐶,𝐷

(
J𝑢K ◦!Ω,(𝑥:𝐴) ◦ ⟨⟨⟨!Γ,(𝑦:𝐶) ,ΠJ𝑡K ◦ 𝜋ℓ⟩⟩⟩

)
= ΛΓ,𝐶,𝐷

(
J𝑢K ◦!Ω,(𝑥:𝐴) ◦ ⟨⟨⟨idΩ ,ΠJ𝑡K ◦ 𝜋ℓ ◦!−1

Γ,(𝑦:𝐶)⟩⟩⟩ ◦!Γ,(𝑦:𝐶)
)

= ΛΓ,𝐶,𝐷

(
J𝑢K ◦!Ω,(𝑥:𝐴) ◦ ⟨⟨⟨idΩ ,ΠJΩ ⊢Bg 𝑡 : 𝐴K⟩⟩⟩ ◦!Γ,(𝑦:𝐶)

)
= ΛΓ,𝐶,𝐷

(
J𝑢K⟨⟨J𝑡K/𝑥⟩⟩ ◦!Γ,(𝑦:𝐶)

)
= ΛΓ,𝐶,𝐷

(
JΩ ⊢Tm 𝑢⟨𝑡/𝑥⟩ : 𝐵K ◦!Γ,(𝑦:𝐶)

)
= JΓ ⊢Tm 𝜆𝑦. (𝑢⟨𝑡/𝑥⟩) : 𝐵K

by definition of the substitution; definition of the interpretation;

naturality of Λ; a (lengthy) diagram chasing; Lemma 7.10 and the

fact that ! is a comonoid morphism; Lemma 7.15; definition of the

semantic substitution; induction hypothesis; and finally definition

of the interpretation.

▶ If 𝑠 is an application 𝑢 𝑣̄: We consider Δ ⊢Tm 𝑢 𝑣̄ : 𝐵.

By definition of the substitution, we have:

(𝑢 𝑣̄) ⟨𝑡/𝑥⟩ =
∑
𝑡◁𝑡1∗𝑡2

(𝑢⟨𝑡1/𝑥⟩) (𝑣̄⟨𝑡2/𝑥⟩ ) .



162 7 Resource Categories

Writing ! for !JΓK,J𝑥:𝐴K, we now compute:

J𝑢 𝑣̄K⟨⟨J𝑡K/𝑥⟩⟩
= J𝑢 𝑣̄K ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
= ev𝐶,𝐵 ◦ ⟨⟨⟨J𝑢K,ΠJ𝑣̄K⟩⟩⟩ ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
= ev𝐶,𝐵 ◦ ⟨⟨⟨J𝑢K ◦!,ΠJ𝑣̄K ◦!⟩⟩⟩ ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
=

∑
J𝑡K◁𝑔̄1∗𝑔̄2

ev𝐶,𝐵 ◦ ⟨⟨⟨J𝑢K ◦! ◦ ⟨⟨⟨idΓ ,Π𝑔̄1⟩⟩⟩,ΠJ𝑣̄K ◦! ◦ ⟨⟨⟨idΓ ,Π𝑔̄2⟩⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev𝐶,𝐵 ◦ ⟨⟨⟨J𝑢K ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡1K⟩⟩⟩,ΠJ𝑣̄K ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡2K⟩⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev𝐶,𝐵 ◦ ⟨⟨⟨J𝑢K⟨⟨J𝑡1K/𝑥⟩⟩, J𝑣̄K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev𝐶,𝐵 ◦ ⟨⟨⟨J𝑢⟨𝑡1/𝑥⟩K,
∑
𝑖∈𝐼

ΠJ𝑣̄𝑡2 ,𝑖K⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

∑
𝑖∈𝐼

ev𝐶,𝐵 ◦ ⟨⟨⟨J𝑢⟨𝑡1/𝑥⟩K,ΠJ𝑣̄𝑡2 ,𝑖K⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

∑
𝑖∈𝐼

J(𝑢⟨𝑡1/𝑥⟩)
(
𝑣̄𝑡2 ,𝑖

)
K

=
∑
𝑡◁𝑡1∗𝑡2

J(𝑢⟨𝑡1/𝑥⟩) (𝑣̄⟨𝑡2/𝑥⟩)K

= J(𝑢 𝑣̄) ⟨𝑡/𝑥⟩K

by definition of the semantic substitution; definition of the interpre-

tation, assuming we have Δ ⊢Tm 𝑢 : 𝐶 → 𝐵 and Δ ⊢Bg 𝑣̄ : 𝐵; Lemma

7.10; Lemma 7.7; the observation that the partitions of 𝑡 coincide

with the partitions of J𝑡K; definition of the semantic substitution

again; induction hypothesis on 𝑢 and 𝑣̄, assuming

𝑣̄⟨𝑡2/𝑥⟩ =
∑
𝑖∈𝐼

𝑣̄𝑡2 ,𝑖 ; (7.2)

compatibility of everything with the additive structure; definition

of the interpretation again; definition of the interpretation of a sum

and (7.2); and finally definition of the substition.

▶ If 𝑠 is an application 𝑦 ®𝑣: Again, we have subcases:

▷ If the head variable is 𝑥: We consider Δ ⊢Tm 𝑥 ®𝑣 : 𝛼.

By definition of the substitution, we have:(
𝑥 ®𝑣

)
⟨𝑡/𝑥⟩ =

∑
𝑡◁𝑡1∗𝑡2

(𝑥⟨𝑡1/𝑥⟩)
(
®𝑣⟨𝑡2/𝑥⟩

)
=

∑
𝑡◁[𝑢]∗𝑡′

𝑢
(
®𝑣⟨𝑡′/𝑥⟩

)



7.3 Interpretation and Soundness 163

Writing ! for !Γ,(𝑥:𝐴), we compute:

J𝑥 ®𝑣K⟨⟨J𝑡K/𝑥⟩⟩
= J𝑥 ®𝑣K ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
= ev ®𝐶,𝛼 ◦ ⟨⟨⟨id

•
®𝐶→𝛼
◦ var

Δ
𝑥 , ⟨|J®𝑣K|⟩⟩⟩⟩ ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

= ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ var

Δ
𝑥 ◦!, ⟨|J®𝑣K|⟩ ◦!⟩⟩⟩ ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ var

Δ
𝑥 ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡1K⟩⟩⟩, ⟨|J®𝑣K|⟩ ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡2K⟩⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ var

Δ
𝑥 ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡1K⟩⟩⟩, J®𝑣K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ 𝜁𝐴 ◦ 𝜋𝓇 ◦ ⟨⟨⟨idΓ ,ΠJ𝑡1K⟩⟩⟩, J®𝑣K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ 𝜁𝐴 ◦ΠJ𝑡1K, J®𝑣K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev ®𝐶,𝛼 ◦ ⟨⟨⟨𝜁𝐴 ◦ id•𝐴 ◦ΠJ𝑡1K, J®𝑣K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

=
∑

𝑡◁[𝑢]∗𝑡2
ev ®𝐶,𝛼 ◦ ⟨⟨⟨𝜁𝐴 ◦ J𝑢K, J®𝑣K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

=
∑

𝑡◁[𝑢]∗𝑡2
J𝑢

(
®𝑣⟨𝑡2/𝑥⟩

)
K

= J
(
𝑥 ®𝑣

)
⟨𝑡/𝑥⟩K

by definition of the semantic substitution; definition of the inter-

pretation; Lemma 7.10; Lemma 7.13; definition of the semantic

substitution; Lemma 7.16 case (1); Lemma 7.10; Lemma 7.17; Lemma

7.8; and the last lines are as in the previous case using Lemma 7.18.

▷ If the head variable is 𝑦 ≠ 𝑥: We consider Δ ⊢Tm 𝑦 ®𝑣 : 𝛼.

By definition of the substitution, we have:(
𝑦 ®𝑣

)
⟨𝑡/𝑥⟩ = 𝑦

(
®𝑣⟨𝑡/𝑥⟩

)
As in the previous subcase, we compute:

J𝑥 ®𝑣K⟨⟨J𝑡K/𝑥⟩⟩
=

∑
𝑡◁𝑡1∗𝑡2

ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ var

Δ
𝑦 ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡1K⟩⟩⟩, J®𝑣K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

=
∑
𝑡◁𝑡1∗𝑡2

ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ var

Γ
𝑦 ◦ 𝜋ℓ ◦ ⟨⟨⟨idΓ ,ΠJ𝑡1K⟩⟩⟩, J®𝑣K⟨⟨J𝑡2K/𝑥⟩⟩⟩⟩⟩

= ev ®𝐶,𝛼 ◦ ⟨⟨⟨id
•
®𝐶→𝛼
◦ var

Γ
𝑦 , J®𝑣K⟨⟨J𝑡K/𝑥⟩⟩⟩⟩⟩

= J
(
𝑦 ®𝑣

)
⟨𝑡/𝑥⟩K

with the same justifications as before; Lemma 7.16 case (2); Lemma

7.12; and the same justifications as before.



164 7 Resource Categories

Case 2. Assume 𝑠 := [𝑠𝑖 | 1 ≤ 𝑖 ≤ 𝑛] ∈ Bg(Δ; 𝐵).
Writing ! for !Γ,(𝑥:𝐴), we compute:

J𝑠K⟨⟨J𝑡K/𝑥⟩⟩
= ΠJ𝑠K ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

=

( ∏
1≤𝑖≤𝑛

J𝑠𝑖K ◦!

)
◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

=
∑

𝑡◁𝑡𝑖∗...𝑡𝑛

∏
1≤𝑖≤𝑛

J𝑠𝑖K ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡𝑖K⟩⟩⟩

=
∑

𝑡◁𝑡𝑖∗...𝑡𝑛

∏
1≤𝑖≤𝑛

J𝑠𝑖K⟨⟨J𝑡𝑖K/𝑥⟩⟩

=
∑

𝑡◁𝑡𝑖∗...𝑡𝑛

∏
1≤𝑖≤𝑛

J𝑠𝑖⟨𝑡𝑖/𝑥⟩K

by definition of the semantic substitution; Lemma 7.11; Lemma 7.11

again; definition of the semantic substitution; and finally induction

hypothesis.

Case 3. Assume ®𝑠 := ⟨𝑠𝑖 | 1 ≤ 𝑖 ≤ 𝑛⟩ ∈ Sq(Δ;
®𝐵).

Writing ! for !Γ,(𝑥:𝐴), we compute:

J®𝑠K⟨⟨J𝑡K/𝑥⟩⟩
= ⟨|J®𝑠K|⟩ ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
= ⟨⟨⟨ΠJ𝑠𝑖K | 1 ≤ 𝑖 ≤ 𝑛⟩⟩⟩ ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
= ⟨⟨⟨ΠJ𝑠𝑖K ◦! | 1 ≤ 𝑖 ≤ 𝑛⟩⟩⟩ ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
=

∑
𝑡◁𝑡𝑖∗...𝑡𝑛

⟨⟨⟨ΠJ𝑠𝑖K ◦! ◦ ⟨⟨⟨idΓ ,ΠJ𝑡𝑖K⟩⟩⟩ | 1 ≤ 𝑖 ≤ 𝑛⟩⟩⟩

=
∑

𝑡◁𝑡𝑖∗...𝑡𝑛
⟨⟨⟨J𝑠𝑖K⟨⟨J𝑡𝑖K/𝑥⟩⟩ | 1 ≤ 𝑖 ≤ 𝑛⟩⟩⟩

=
∑

𝑡◁𝑡𝑖∗...𝑡𝑛
⟨⟨⟨J𝑠𝑖⟨𝑡𝑖/𝑥⟩K | 1 ≤ 𝑖 ≤ 𝑛⟩⟩⟩

by definition of the semantic substitution; definition of packing;

Lemma 7.10; Lemma 7.13; definition of the semantic substitution;

and finally induction hypothesis.

7.3.4 Soundness

From the substitution lemma above, we deduce that the interpretation is

invariant under reduction.

Theorem 7.20 – Soundness

Consider 𝑆 ∈ ΣTm(Γ;𝐴). If 𝑆 { 𝑆′ then J𝑆K = J𝑆′K.

Proof. Preservation of 𝛽-reduction follows from Lemma 7.19.

Invariance for bags and sequences must be stated carefully: reduction

yields sums of bags and sequences whereas the sets BgC(Γ, 𝐴) and

SqC(Γ, ®𝐴) are not stable under sums.



7.4 How to build your own resource category 165

[20]: Ehrhard and Regnier (2003), ‘The

differential lambda-calculus’

[7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

[8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

Toplevel reduction. Consider a redex Γ ⊢Tm (𝜆𝑥.𝑠) 𝑡 : 𝐴. Then:

J(𝜆𝑥.𝑠) 𝑡K
= ev𝐵→𝐴 ◦ ⟨⟨⟨J𝜆𝑥.𝑠K,ΠJ𝑡K⟩⟩⟩
= ev𝐵→𝐴 ◦ ⟨⟨⟨ΛΓ,𝐵,𝐴

(
JΓ, 𝑥 : 𝐵 ⊢Tm 𝑠 : 𝐴K ◦!Γ,(𝑥:𝐵)

)
,ΠJ𝑡K⟩⟩⟩

= ev𝐵→𝐴 ◦
(
ΛΓ,𝐵,𝐴

(
J𝑠K ◦!Γ,(𝑥:𝐵)

)
⊗ id𝐴

)
◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩

= J𝑠K ◦!Γ,(𝑥:𝐵) ◦ ⟨⟨⟨idΓ ,ΠJ𝑡K⟩⟩⟩
= J𝑠K⟨⟨J𝑡K/𝑥⟩⟩
= J𝑠⟨𝑡/𝑥⟩K

by definition of the interpretation (with Γ ⊢Tm 𝜆𝑥.𝑠 : 𝐵 → 𝐴);

definition of the interpretation again; smcc laws and the definition

of tupling; equations of monoidal closure; the definition of semantic

substitution; and finally Lemma 7.19.

Context closure. To show that invariance extends by context closure,

we prove the three statements:

(1) if 𝑠 ∈ Tm(Γ;𝐴) and 𝑠 { 𝑆′ then J𝑠K = J𝑆′K;
(2) if 𝑠 ∈ Bg(Γ;𝐴) and 𝑠 {

∑
𝑖∈𝐼 𝑠𝑖 then ΠJ𝑠K =

∑
𝑖∈𝐼 ΠJ𝑠𝑖K;

(3) if ®𝑠 ∈ Sq(Γ;
®𝐴) and ®𝑠 { ∑

𝑖∈𝐼 ®𝑠𝑖 then ⟨|J®𝑠K|⟩ = ∑
𝑖∈𝐼⟨|J®𝑠𝑖K|⟩

by mutual induction, following the inductive definition of context

closure. Finally, this extends to sums as required.

7.4 How to build your own resource category

Resource calculus is closely related to Erhrard and Regnier’s differential

lambda-calculus [20], which is usually interpreted using differential

categories (introduced in [7] as a categorical framework for differential

linear logic).

However, here we study resource calculus in relation with games, and

strategies of pointer concurrent games are not built from a model of

linear logic: their categorical structure is not a differential category.

Nevertheless, resource categories are built using similar constructions to

some differential categories, more precisely monoidal storage categories as

described in [8].

The intuition behind these similarities is that the exponential ! of differ-

ential categories allows us to go from linear morphisms from 𝐴 to 𝐵, to

morphisms from !𝐴 to !𝐵, which behave linearly with respect to !𝐴 and

!𝐵, but not with respect to the original objects 𝐴 and 𝐵. These intuitions

will guide us in our construction of resource categories from additive

monoidal storage categories – which are the categories we mostly refer

to when mentioning “differential categories” in this section, although

differential categories in general are a much wider notion. Our main focus

here is not to give an exhaustive presentation of differential categories,

but rather to present the particular categorical structure which we will

use to build a resource category.



166 7 Resource Categories

!𝐴

dig

der

!𝐴

=

!𝐴

!𝐴

=

!𝐴

dig

der

!𝐴

!𝐴

dig

dig

!𝐴

=

!𝐴

dig

dig

!𝐴

Figure 7.8: Comonad laws

Notation: Recall that we use squared

boxes for ! applied to morphisms:

𝑓 := ! 𝑓

Remark: We write dig and der for the nat-

ural transformations because they match

the digging and dereliction rules of linear

logic (introduced in [24]

[24]: Girard (1987), ‘Linear logic’

).

7.4.1 Additive monoidal storage categories

Coalgebra modality. Coalgebra modalities are similar to comonoids

(Definition 1.6), but they build over a comonad.

Definition 7.21 – Comonad

Consider a category C. A comonad on C is (!, dig, der)with

! : C→ C an endofunctor,

dig𝐴 : !𝐴→!!𝐴 a natural transformation,

der𝐴 : !𝐴→ 𝐴 a natural transformation,

satisfying the equations of Figure 7.8.

!𝐴

dig

Δ

!!𝐴 !!𝐴

=

!𝐴

Δ

dig dig

!!𝐴 !!𝐴

Figure 7.9: Coalgebra modality

Definition 7.22 – Coalgebra modality [8, Definition 1][8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

A coalgebra modality on a symmetric monoidal category C is

(!, dig, der,Δ, e)with (!, dig, der) a comonad and two natural trans-

formations

Δ𝐴 : !𝐴→!𝐴⊗!𝐴 e𝐴 : !𝐴→ 𝐼

such that for any 𝐴, (!𝐴,Δ𝐴 , e𝐴) is a comutative comonoid (Defini-

tion 1.7) and dig preserves Δ in the sense of Figure 7.9.

Bialgebra modality. Next, we define bialgebra modalities, which again

are reminiscent of bialgebras seen in previous sections.

!𝐴 !𝐴

∇

der

!𝐴

=

!𝐴 !𝐴

der e

!𝐴

+

!𝐴 !𝐴

e der

!𝐴

Figure 7.10: Bialgebra modality



7.4 How to build your own resource category 167

!𝐴

!𝐴

𝑓 + 𝑔 =

!𝐴

Δ

𝑓 𝑔

∇

!𝐴

!𝐴

0

!𝐴

=

!𝐴

e

𝐼

!𝐴

Figure 7.11: Addititve Bialgebra Modality Laws

𝐴

cod

Δ

!𝐴 !𝐴

=

𝐴

cod 𝐼

!𝐴 !𝐴

+

𝐴

𝐼 cod

!𝐴 !𝐴

𝐴

cod

dig

!!𝐴

=

𝐴

𝐼

dig

cod

cod

∇

!!𝐴

Figure 7.12: Product rule and chain rule of codereliction

Definition 7.23 – Bialgebra modality [8, Definition 4]

[8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

A bialgebra modality on an asmc C is (!, dig, der,Δ, e,∇, 𝐼) with

(!, dig, der,Δ, e) a coalgebra modality and for any 𝐴, a bialgebra

(!𝐴,Δ𝐴 , e𝐴 ,∇𝐴 , 𝐼𝐴) following the equation of Figure 7.10.

Definition 7.24 – Additive bialgebra modality [8, Definition 5] [8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

An additive bialgebra modality in an asmc C is a bialgebra modal-

ity (!, dig, der,Δ, e,∇, 𝐼) compatible with the additive structure in

the sense of Figure 7.11.

Additive bialgebra modalities can be equipped with a codereliction, a

natural transformation cod𝐴 : 𝐴→!𝐴 named codereliction because it has

the inverse type to der𝐴, but which is not an inverse of der𝐴.

Definition 7.25 – Codereliction [8, Definition 9]3

3: The chain rule equation given here

is the version presented in [23]

[23]: Fiore (2007), ‘Differential Structure

in Models of Multiplicative Biadditive

Intuitionistic Linear Logic’

and not

the (slightly longer) version of [7, Def-

inition 4.11]

[7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

; however both are equiva-

lent in monoidal storage categories ([8,

Lemma 7 and Corollary 5]

[8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

).

Consider an asmc C. A codereliction for an additive bialgebra

modality (!, dig, der,Δ, e,∇, 𝐼) is a natural transformation cod𝐴 : 𝐴→
!𝐴 satisfying the following equations:

e𝐴 ◦ cod𝐴 = 0 (constant rule)
der𝐴 ◦ cod𝐴 = id𝐴 (linear rule)

as well as the equations of Figure 7.12.



168 7 Resource Categories

4: More precisely they are in bĳection

with deriving transformations satisfying

the ∇- rule of [7].

[7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

[8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

[38]: Seely (1989), ‘Linear Logic, ∗-
Autonomous Categories and Cofree

Coalgebras’

Codereliction is a key notion of differential categories: in an asmc with a

bialgebra modality, coderelictions induce deriving transformations
4

([7,

Theorem 4.12]). In an asmc with an additive bialgebra modality, coderelic-

tion are in bĳection with deriving transformations ([8, Theorem 4]).

Storage Categories. Now, we focus on storage categories, which are smcs

with a coalgebra modality and a cartesian product &, with the following

isomorphism:

! (𝐴&𝐵) � !𝐴⊗!𝐵

called Seely isomorphism (introduced as “Δ iso” in [38]).

Recall that in a category C, a terminal object is an object T such that for

any object 𝐴 ∈ C, there exists a unique morphism in C(𝐴, T), noted

⊤𝐴 : 𝐴→ T. A category Chas finite products if it has a terminal object and

for all objects 𝐴, 𝐵 ∈ C, there is a product (𝐴&𝐵,𝜋𝐴 ,𝜋𝐵) in C satisfying

the universal property of products.

Definition 7.26 – Seely Isomorphism [8, Definition 10][8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

Consider an smc Cwith a binary product &, a terminal object T, and

a coalgebra modality (!, dig, der,Δ, e). It has Seely isomorphisms
if the map 𝜒T, defined as:

𝜒T : !T

eT−→ 𝐼 ,

and the natural transformation 𝜒, defined as:

𝜒𝐴,𝐵 : ! (𝐴&𝐵) Δ𝐴&𝐵−−−→! (𝐴&𝐵) ⊗! (𝐴&𝐵) !𝜋𝐴⊗!𝜋𝐵−−−−−−→!𝐴⊗!𝐵 ,

are isomorphisms.

Definition 7.27 – Monoidal Storage Category [8, Definition 10][8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

A monoidal storage category is a smc with finite products and a

coalgebra modality with Seely isomorphisms.

We can consider storage categories with an additive structure.

Definition 7.28 – Additive Monoidal Storage Category

An additive monoidal storage category [8, Definition 11][8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

is a

category C that is a monoidal storage category and an additive

symmetric monoidal category, with the same monoidal structure.

Additive storage categories are actually related to asmcs with a bialgebra

modality.



7.4 How to build your own resource category 169

[8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

Proposition 7.29 – from [8, Theorem 6] [8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

Consider an additive monoidal storage category C.

Then we define (!, dig, der,Δ, e,∇, 𝐼)with:

Δ𝐴 : !𝐴
!⟨id𝐴 ,id𝐴⟩−−−−−−→! (𝐴&𝐴)

𝜒𝐴,𝐴−−−→!𝐴⊗!𝐴

e𝐴 : !𝐴
!0−→!T

𝜒T−→ 𝐼

∇𝐴 : !𝐴⊗!𝐴
𝜒−1

𝐴,𝐴−−−→! (𝐴&𝐴) 𝜋1+𝜋2−−−−→!𝐴

𝐼𝐴 : 𝐼
𝜒−1

T−−→!T

!0−→!𝐴

and it is a bialgebra modality.

In [8], the authors even prove that those additive storage categories are

equivalent to asmcs with a bialgebra structure.

7.4.2 The construction

We start from an additive monoidal storage category.

Definition 7.30 – Res(−)

Consider an additive monoidal storage category Cwith a codere-

liction cod. Using the notation of Proposition 7.29, we define the

category Res(C)with same objects as Cand morphisms as:

Res(C)(𝐴, 𝐵) = C(!𝐴, !𝐵) .

Definition 7.31 – Tensor for Res(−)

We define a bifunctor ⊗Res(C) in the following way:

𝐴 ⊗Res(C) 𝐵 =𝐴& 𝐵

𝑓 ⊗Res(C) 𝑔 = 𝜒−1

𝐶,𝐷 ◦
(
𝑓 ⊗ 𝑔

)
◦ 𝜒𝐴,𝐵

for any objects 𝐴, 𝐵, 𝐶, 𝐷 and morphisms 𝑓 ∈ Res(C)(𝐴, 𝐶) and

𝑔 ∈ Res(C)(𝐵, 𝐷).

Indeed, morphisms of a resource category do not all behave linearly,

which is why we define Res(C)(𝐴, 𝐵) as C(!𝐴, !𝐵): these are morphisms

that are not necessarily linear with respect to 𝐴 and 𝐵. To obtain a

monoidal structure in Res(C), we prove that ⊗Res(C) is a tensor, using

Seely isomorphisms to see !(𝐴⊗Res(C) 𝐵) as !𝐴⊗!𝐵. The additive bialgebra

modality structure of C easily induces a bialgebra structure in Res(C)
(which we will define precisely in the next proof). Finally, recall the

parting remark of Section 7.1: pointed identity laws are very similar to

the dereliction and codereliction laws of differential categories. We will

thus construct id• from der and cod.



170 7 Resource Categories

Theorem 7.32

Consider an additive monoidal storage category Cwith a codere-

liction cod.

Then Res(C) is a resource category.

Proof. We use notations of Definition 7.30. To make the equations

less cluttered, we write R for Res(C) and 𝐴 for id𝐴, and we omit

indices for 𝜒 when they are clear from the context.

SMC. We prove that (R,⊗R, T) is a smc (Definition 1.2). We set:

𝛼R
𝐴,𝐵,𝐶

: !((𝐴&𝐵)&𝐶) 𝜒−→!(𝐴&𝐵)⊗!𝐶
𝜒⊗!𝐶−−−−→ (!𝐴⊗!𝐵)⊗!𝐶

𝛼C
!𝐴,!𝐵,!𝐶−−−−−→!𝐴 ⊗ (!𝐵⊗!𝐶) !𝐴⊗𝜒−1

−−−−−→!𝐴⊗!(𝐵&𝐶) 𝜒−1

−−→!(𝐴&(𝐵&𝐶))

𝜆R
𝐴

: !(T&𝐴) 𝜒−→!T⊗!𝐴
𝜒T⊗!𝐴−−−−→ 𝐼⊗!𝐴

𝜆C
!𝐴−−→!𝐴

𝜌R
𝐴

: !(𝐴&T) 𝜒−→!𝐴⊗!T

!𝐴⊗𝜒T−−−−→!𝐴 ⊗ 𝐼
𝜌C

!𝐴−−→!𝐴

𝜎R
𝐴,𝐵

: !(𝐴&𝐵) 𝜒−→!𝐴⊗!𝐵
𝜎C

!𝐴,!𝐵−−−→!𝐵⊗!𝐴
𝜒−1

−−→!(𝐵&𝐴)

and a direct diagram chasing, using smc properties of C and the

fact that 𝜒 is an isomorphism, shows that R is a smc too.

Additivity. Direct from the additive structure of C.

Bialgebra structure. For any object 𝐴, we define the morphisms:

𝛿R𝐴 : !𝐴
ΔC
𝐴−−→!𝐴⊗!𝐴

𝜒−1

−−→!(𝐴&𝐴) 𝜖R𝐴 : !𝐴
e𝐴−→ 𝐼

𝜒−1

T−−→!T

𝜇R
𝐴 : !(𝐴&𝐴) 𝜒−→!𝐴⊗!𝐴

∇𝐴−−→!𝐴 𝜂R𝐴 : !T

𝜒T−→ 𝐼
𝐼𝐴−→!𝐴

Then one can check that (𝐴, 𝛿𝐴 , 𝜖𝐴 , 𝜇𝐴 , 𝜂𝐴) is a bialgebra by diagram

chasing, using 𝜒 and the properties of the bialgebra modality of C.

Likewise, we check that it is compatible with the monoidal structure

of R (Figure 7.3).

Pointed Identity. Finally, for any object 𝐴, we define the pointed

identity as:

id•𝐴 : !𝐴
der𝐴−−−→ 𝐴

cod𝐴−−−→!𝐴

and we check that it matches Definition 7.3:

▶ idempotent:

id•𝐴 ◦ id•𝐴 = cod𝐴 ◦ der𝐴 ◦ cod𝐴 ◦ der𝐴
= cod𝐴 ◦ id𝐴 ◦ der𝐴
= id•𝐴

by definition of id•
𝐴

and linear rule of Definition 7.25.



7.4 How to build your own resource category 171

▶ non-erasable:

𝜖R𝐴 ◦ id•𝐴 = 𝜒−1

T
◦ e𝐴 ◦ cod𝐴 ◦ der𝐴

= 𝜒−1

T
◦ 0 ◦ der𝐴

= 0

by definition; constant rule of Definition 7.25 and additivity.

▶ non-erasing:

id•𝐴 ◦ 𝜂R𝐴 = cod𝐴 ◦ der𝐴 ◦ 𝐼𝐴 ◦ 𝜒T (definition)

= cod𝐴 ◦ 0 ◦ 𝜒T ([8, Lemma 2]

[8]: Blute, Cockett, Lemay, and Seely

(2020), ‘Differential Categories Revisited’

)

= 0 (additivity)

Remark: Actually der𝐴 ◦ 𝐼𝐴 = 0 was part

of the original definition of bialgebra

modalities ([7, Definition 4.8]

[7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

), but it can

be deduced from the other axioms and

naturality of 𝐼 and der ([8, Lemma 2]).

▶ non-duplicable:

𝛿R𝐴 ◦ id•𝐴 = 𝜒−1

𝐴,𝐴 ◦ Δ𝐴 ◦ cod𝐴 ◦ der𝐴 (definition)

and using string diagrams in (C,⊗, 𝐼), we have:

!𝐴

der

cod

Δ

!𝐴 !𝐴

=

!𝐴

der

cod 𝐼

!𝐴 !𝐴

+

!𝐴

𝐼

der

cod

!𝐴 !𝐴

by product rule (Definition 7.25, Figure 7.12) and additivity.

Therefore,

𝛿R𝐴 ◦ id•𝐴 =
(
id•𝐴 ⊗R 𝐼𝐴

)
+

(
𝐼𝐴 ⊗R id•𝐴

)
again using Seely and the definition of id•.

▶ non-duplicative:

id•𝐴 ◦ 𝜇R
𝐴 = cod𝐴 ◦ der𝐴 ◦ ∇𝐴 ◦ 𝜒𝐴, 𝐴 (definition)

which gives us, using string diagrams in (C,⊗, 𝐼):

!𝐴 !𝐴

∇

der

cod

!𝐴

=

!𝐴 !𝐴

der

cod

e

!𝐴

+

!𝐴 !𝐴

e der

cod

!𝐴

by compatibility of der and ∇ (Definition 7.23) and additivity;

that is

id•𝐴 ◦ 𝜇R
𝐴 =

(
id•𝐴 ⊗R e𝐴

)
+

(
e𝐴 ⊗R id•𝐴

)
using Seely again and the definition of id•.



172 7 Resource Categories

7.4.3 What about closeness?

Intuitively, a category C is closed if for any pair of objects 𝐴 and 𝐵,

C(𝐴, 𝐵) can also be seen as an object of C. In particular, for monoidal

categories, C is monoidal closed if there exists ⊸ and Λ a bĳection natural

in 𝐴, 𝐵, 𝐶 such that:

Λ𝐴,𝐵,𝐶 : C(𝐴 ⊗ 𝐵, 𝐶) � C(𝐴, 𝐵⊸ 𝐶)

What happens if we consider C as in Theorem 7.32 a monoidal closed
category? Does the closed structure also transport to Res(C)? Let us try

to prove the isomorphism above for R = Res(C). Everything seems to

go smoothly for the first part:

R(𝐴 ⊗R 𝐵, 𝐶) = C(! (𝐴&𝐵) , !𝐶) (definition)

� C(!𝐴⊗!𝐵, !𝐶) (Seely isomorphism)

� C(!𝐴, !𝐵⊸!𝐶) (closed structure of C)

All that is left to do now is to define ⊸R such that

R(𝐴, 𝐵⊸R 𝐶) = C(!𝐴, !𝐵⊸!𝐶) ,

but that is where the difficulty lies: there seems to be no obvious way

to define ⊸R such that !(𝐵 ⊸R 𝐶) � !𝐵 ⊸!𝐶. In particular, it is clear

that !(𝐵 ⊸ 𝐶) and !𝐵 ⊸!𝐶 are not necessarily isomorphic. Hence, the

question of whether or not we can build a closed resource category from

a closed differential category remains open.

7.5 Conclusion and perspectives

There is still much to study on resource categories. For instance, we did

not tackle yet the subject of cartesian structure for a resource category.

However, the subcategory of comonoid morphisms is cartesian – to what

strategies do they correspond in pointer concurrent games? Besides,

morphisms interpreting finite resource terms do not form a subcategory,

because they lack identities – how can we best describe their structure?

What about finite strategies in general?

Resource categories were introduced to better understand the links

between resource terms and strategies; we hope to generalize this corres-

pondence to the Taylor expansion of 𝜆-terms.



Reminder: We write I for the empty

arena. For any arena B, 1B is the strategy

on B with only the empty isogmentation

0 in its support, with coefficient 1.

PCG and Resource-calculus 8
8.1 PCG is a resource cate-

gory . . . . . . . . . . . . 173
8.2 Compatibility with

normal forms . . . . . . 182
8.3 Conclusion . . . . . . . . 183

We now check that PCG is indeed a ressource category, such that the

induced interpretation of normal forms coincides with the interpretations

from Chapter 5, thus completing the proof.

8.1 PCG is a resource category

Recall that we already know PCG is a symmetric monoidal category (see

Theorem 6.60).

8.1.1 Additive structure

We start by checking that PCG is enriched over commutative monoids.

Consider two arenas A, B, then PCG[A, B] comes with an additive struc-

ture with, for any 𝜎, 𝜏 : G ⊢ A, the sum 𝜎 + 𝜏 : G ⊢ A is defined as the

formal sum:

𝜎 + 𝜏
def

=
∑

q∈Isog(G⊢A)
(𝜎(q) + 𝜏(q)) · q ,

and 0 is the empty strategy (supp(0) = ∅). The tensor and the composition

are compatible with the additive structure, hence PCG is an asmc.

8.1.2 Bialgebra laws

Now, we look at the bialgebra structure. For an arena A, we start by

defining the bialgebra morphisms, using the contraction renaming:

cA : A ⊗ A → A
(1, a) ↦→ a
(2, a) ↦→ a .

Then the bialgebra morphisms are:

𝛿A = idA⊗A ⋉ cA , 𝜀A = 1A⊢I , 𝜇A = cA ⋊ idA⊗A , 𝜂A = 1I ⊢A .

Using lemmas on renamings from Chapter 6, we check that those

morphisms follow bialgebra laws. Most of them are quite easy to prove;

the composition 𝛿 ⊙ 𝜇 is more subtle and requires us to be very careful

about composition and partitions of positions versus configurations.

Lemma 8.1 – Coalgebra laws

Consider an arena A, then (A, 𝛿A , 𝜀A) is a commutative comonoid

(Definition 1.7).



174 8 PCG and Resource-calculus

Proof. Associativity. We have:Lemmas (and proposition) used:
– 6.53: renamming of a composition;

– 6.31: neutrality of copycat;

– 6.51: identity renaming;

– 6.56: tensor of renamings;

– 6.38: tensor of identities;

– 6.54: inverse of a renaming;

– 6.52: composition of renamings.

𝛼A,A,A ⊙ (𝛿A ⊗ idA) ⊙ 𝛿A

=
(
aA,A,A ⊙ id(A⊗A)⊗A

)
⊙ (idA⊗A ⋉ cA ⊗ idA) ⊙ (idA⊗A ⋉ cA)

= aA,A,A ⋉
(
id(A⊗A)⊗A ⊙ (idA⊗A ⋉ cA ⊗ idA)

)
⊙ (idA⊗A ⋉ cA)

= aA,A,A ⋊ (idA⊗A ⋉ cA ⊗ idA) ⊙ (idA⊗A ⋉ cA)
= (aA,A,A ⋊ ((idA⊗A ⋉ cA ⊗ idA) ⊙ idA⊗A)) ⋉ cA

= (aA,A,A ⋊ (idA⊗A ⋉ cA ⊗ idA)) ⋉ cA

= (aA,A,A ⋊ (idA⊗A ⋉ cA ⊗ idA ⋉ idA)) ⋉ cA

= (aA,A,A ⋊ ((idA⊗A ⊗ idA) ⋉ (cA × idA))) ⋉ cA

=
( (

aA,A,A ⋊ id(A⊗A)⊗A
)
⋉ (cA × idA)

)
⋉ cA

=

((
idA⊗(A⊗A) ⋉ a−1

A,A,A

)
⋉ (cA × idA)

)
⋉ cA

= idA⊗(A⊗A) ⋉
(
cA ◦ (cA × idA) ◦ a−1

A,A,A

)
= idA⊗(A⊗A) ⋉ (cA ◦ (idA × cA))
= (idA ⊗ idA⊗A) ⋉ (cA ◦ (idA × cA))
= ((idA ⊗ idA⊗A) ⋉ (idA × cA)) ⋉ cA

= (idA ⊗ 𝛿A) ⊙ 𝛿A

by definition; Lemma 6.53; Proposition 6.31; Lemma 6.53; Propo-

sition 6.31; Lemma 6.51; Lemma 6.56; Lemma 6.38; Lemma 6.54;

Lemma 6.52 twice; computation of the two renamings; Lemma 6.38;

Lemma 6.52; and Lemma 6.56, Proposition 6.31, and definitions.

Neutrality. We have:

𝜆A ⊙ (𝜀A ⊗ idA) ⊙ 𝛿A

= (lA ⋊ idI⊗A) ⊙ (1A⊢I ⊗ idA) ⊙ (idA⊗A ⋉ cA)
= lA ⋊ (1A⊢I ⊗ idA) ⋉ cA

= idA

by definition; Lemma 6.53 and Proposition 6.31; and direct compu-

tation using the definitions.

Commutativity. We have:

𝛾A,A ⊙ 𝛿A

= (sA,A ⋊ idA⊗A) ⊙ (idA⊗A ⋉ cA)
= ((sA,A ⋊ idA⊗A) ⊙ idA⊗A) ⋉ cA

= (sA,A ⋊ idA⊗A) ⋉ cA

= (idA⊗A ⋉ sA,A) ⋉ cA

= idA⊗A ⋉ (cA ◦ sA,A)
= idA⊗A ⋉ cA

= 𝛿A

by definition; Lemma 6.53; Proposition 6.31; Lemma 6.54; Lemma 6.52;

computation of the renamings; and definition.



8.1 PCG is a resource category 175

𝜇𝐴

𝛿𝐴

=

𝛿𝐴 𝛿𝐴

𝜇𝐴 𝜇𝐴

(a) Multiplication and co-multiplication.

𝜂𝐴

𝛿𝐴

=

𝜂𝐴 𝜂𝐴

(b) Unitor and co-multiplication.

𝜇𝐴

𝜀𝐴

=

𝜀𝐴 𝜀𝐴

(c) Multiplication and co-unitor.

𝜂𝐴

𝜀𝐴

=

(d) Unitor and co-unitor.

Figure 7.1: Bialgebra laws.

Likewise, 𝜇A and 𝜂A respect algebra laws – since they are completely

symmetric we don’t detail the proofs.

Lemma 8.2 – Algebra laws

Consider an arena A, then (A, 𝜇A , 𝜂A) is a commutative monoid

(Definition 1.5).

Finally, we look at the additional bialgebra laws.

Lemma 8.3 – Bialgebra laws

Consider an arena A. Then 𝛿A, 𝜀A, 𝜇A and 𝜂A follow the additional

bialgebra laws of Figure 7.1.

Proof. (a) The intuition behind the distributivity law should be

rather clear. Given a strategy on G ⊢ A ⊗ A, the multiplication 𝜇A
will “flatten” the isogmentations on a single copy of A, and the

comultiplication 𝛿A will distribute these isogmentations to the two

sides of A⊗ A. This should be the same as taking isogmentations on

G ⊢ A ⊗ A, distributing their left and right sides, and then gathering

everything to A ⊗ A again. However, the actual proof is very subtle

and requires a lot of computation. In order to try and keep the

current proof to a reasonnable length, the technical details for the

distributivity law are presented in next subsection.

Leaving aside the first law for now, we focus on the other three.

(b) We have:

𝛿A ⊙ 𝜂A ⊙ 𝜆I

= (idA⊗A ⋉ cA) ⊙ 1I⊢A ⊙ (lI ⋊ idI⊗I)
= 1I⊢A⊗A ⊙ (lI ⋊ idI⊗I)
= 1I⊢A⊗A ⊙

(
idI ⋉ l−1

I
)

= 1I⊢A⊗A ⋉ l−1

I

= (1I⊢A ⊗ 1I⊢A)

by definition; computation of the composition; Lemma 6.54; Lemmas

6.53 and 6.30; computation of the renaming.

(c) Symetric to (b).

(d) By definition, we have:

𝜂A ⊙ 𝜇A = 1A⊢I ⊙ 1I⊢A = 1I⊢I .

8.1.3 Proof of the bialgebra distributivity law

Let us look at the exchange rule between 𝛿 and 𝜇 again. First, we must

introduce some additional notation.

Notation: Consider A a negative arena and 𝑥 ∈ Conf(A). We write

𝑥 = 𝑦 ∪∗ 𝑧 when 𝑦, 𝑧 ∈ Conf(A), |𝑥| = |𝑦| ∪ |𝑧| and |𝑦| ∩ |𝑧| = ∅.



176 8 PCG and Resource-calculus

Reminder: Given two configurations

𝑥1 , 𝑥2 ∈ Conf(A), we set 𝑥1 ∗ 𝑥2 with:

▶ events |𝑥1| + |𝑥2|,
▶ display may 𝜕((𝑖 , 𝑎)) = 𝜕𝑥𝑖 (𝑎),
▶ causal order inherited.

Then 𝑥1 ∗ 𝑥2 ∈ Conf(A).

𝛿𝐴 𝛿𝐴

𝜇𝐴 𝜇𝐴

dA

gA

Figure 8.1: Distribute and gather.

This is analogous to 𝑥 = 𝑦 ∗ 𝑧 (and entails 𝑥 � 𝑦 ∗ 𝑧), but instead of the

tagged disjoint union we have the standard set-theoretic union, which

happens to be disjoint.

Qualitatively. We rephrase the exchange rule: we write

dA
def

= (idA ⊗ 𝛾A,A ⊗ idA) ⊙ (𝛿A ⊗ 𝛿A) , gA
def

= 𝜇A ⊗ 𝜇A

for “distribute” and “gather” (see Figure 8.1) which lets us phrase the

desired bialgebra law as 𝛿A ⊙ 𝜇A = gA ⊙ dA.

Writing 𝑆(x1 , . . . , x𝑛)
def

= ♯Sym (x1) × . . . × ♯Sym (x𝑛), we have:

dA =
∑

x,y,u,v ∈ Pos(A)

1

𝑆(x, y, u, v) · d
x,y,u,v
A

gA =
∑

x,y,u,v ∈ Pos(A)

1

𝑆(x, y, u, v) · g
x,y,u,v
A

where dx,y,u,v
A and gx,y,u,v

A are the isomorphism classes of the augmentations

𝑑
x,y,u,v
A and 𝑔

x,y,u,v
A obtained with

⟬𝑑𝑥,𝑦,𝑢,𝑣A ⟭ = (𝑥 ∗ 𝑦) ⊗ (𝑢 ∗ 𝑣) ⊢ (𝑥 ⊗ 𝑢) ⊗ (𝑦 ⊗ 𝑣)
⟬𝑔𝑥,𝑦,𝑢,𝑣A ⟭ = (𝑥 ⊗ 𝑦) ⊗ (𝑢 ⊗ 𝑣) ⊢ (𝑥 ∗ 𝑦) ⊗ (𝑢 ∗ 𝑣)

and the obvious copycat behaviour on each component 𝑥, 𝑦, 𝑢, 𝑣.

For our proof, the first key observation is the following lemma:

Lemma 8.4 – Qualitative behavior

Consider an arena A, and x, y, x′, y′ ∈ Pos(A). Then,

𝜹x,y
A ⊙𝝁

x′ ,y′
A =

∑
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟 s.t.

x𝑙∗x𝑟=x, y𝑙∗y𝑟=y
x𝑙∗y𝑙=x′ , x𝑟∗y𝑟=y′

∑
𝑥=𝑥𝑙 ∪∗ 𝑥𝑟 s.t. 𝑥𝑙∈x𝑙 ,𝑥𝑟∈x𝑟
𝑦=𝑦𝑙 ∪∗ 𝑦𝑟 s.t. 𝑦𝑙∈y𝑙 ,𝑦𝑟∈y𝑟
𝑥′=𝑥′

𝑙
∪∗ 𝑥′𝑟 s.t. 𝑥′

𝑙
∈x′

𝑙
,𝑥′𝑟∈x′𝑟

𝑦′=𝑦′
𝑙
∪∗ 𝑦′𝑟 s.t. 𝑦′

𝑙
∈y′

𝑙
,𝑦′𝑟∈y′𝑟

gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟
A ⊙dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A .

Proof. Consider a symmetry 𝜑 : 𝑥 ∗ 𝑦 � 𝑥′ ∗ 𝑦′. This symmetry

sends some events of 𝑥 to 𝑥′, and some others to 𝑦′ – likewise,

it sends some events of 𝑦 to 𝑥′, and some to 𝑦′. Following these

partitions, symmetries 𝜑 : 𝑥 ∗ 𝑦 � 𝑥′ ∗ 𝑦′ are in bĳection with
𝑥 = 𝑥𝑙 ∪∗ 𝑥𝑟
𝑦 = 𝑦𝑙 ∪∗ 𝑦𝑟
𝑥′ = 𝑥′

𝑙
∪∗ 𝑥′𝑟

𝑦′ = 𝑦′
𝑙
∪∗ 𝑦′𝑟

,

𝜑𝑙 ,𝑙 : 𝑥𝑙 � 𝑥′
𝑙

𝜑𝑙 ,𝑟 : 𝑥𝑟 � 𝑦′
𝑙

𝜑𝑟,𝑙 : 𝑦𝑙 � 𝑥′𝑟
𝜑𝑟,𝑟 : 𝑦𝑟 � 𝑦′𝑟

 .

Additionally, this decomposition satisfies

𝛿
𝑥,𝑦

A ⊙𝜑 𝜇
𝑥′ ,𝑦′

A = 𝑔
𝑥′
𝑙
,𝑥′𝑟 ,𝑦

′
𝑙
,𝑦′𝑟

A ⊙(𝜑𝑙 ,𝑙⊗𝜑𝑟,𝑙 )⊗(𝜑𝑙 ,𝑟⊗𝜑𝑟,𝑟 ) 𝑑
𝑥𝑙 ,𝑥𝑟 ,𝑦𝑙 ,𝑦𝑟
A

which is verified by an immediate analysis of the copycat behaviour

of this composition.



8.1 PCG is a resource category 177

We then proceed with, for arbitrary 𝑥 ∈ x, 𝑦 ∈ y, 𝑥′ ∈ x′, 𝑦′ ∈ y′:

𝜹x,y
A ⊙ 𝝁x′ ,y′

A

=
∑

𝜑 : 𝑥∗𝑦�𝑥′∗𝑦′
𝛿
𝑥,𝑦

A ⊙𝜑 𝜇
𝑥′ ,𝑦′

A

=
∑

𝑥=𝑥𝑙 ∪∗ 𝑥𝑟
𝑦=𝑦𝑙 ∪∗ 𝑦𝑟
𝑥′=𝑥′

𝑙
∪∗ 𝑥′𝑟

𝑦′=𝑦′
𝑙
∪∗ 𝑦′𝑟

∑
𝜑𝑙 ,𝑙 :𝑥𝑙�𝑥′𝑙
𝜑𝑙 ,𝑟 :𝑥𝑟�𝑦′𝑙
𝜑𝑟,𝑙 :𝑦𝑙�𝑥′𝑟
𝜑𝑟,𝑟 :𝑦𝑟�𝑦′𝑟

𝑔
𝑥′
𝑙
,𝑥′𝑟 ,𝑦

′
𝑙
,𝑦′𝑟

A ⊙(𝜑𝑙 ,𝑙⊗𝜑𝑟,𝑙 )⊗(𝜑𝑙 ,𝑟⊗𝜑𝑟,𝑟 ) 𝑑
𝑥𝑙 ,𝑥𝑟 ,𝑦𝑙 ,𝑦𝑟
A︸                                             ︷︷                                             ︸

noted ♣ below

=
∑

x𝑙 ,x𝑟 ,y𝑙 ,y𝑟 s.t.

x𝑙∗x𝑟=x, y𝑙∗y𝑟=y
x𝑙∗y𝑙=x′ , x𝑟∗y𝑟=y′

∑
𝑥=𝑥𝑙 ∪∗ 𝑥𝑟 s.t. 𝑥𝑙∈x𝑙 ,𝑥𝑟∈x𝑟
𝑦=𝑦𝑙 ∪∗ 𝑦𝑟 s.t. 𝑦𝑙∈y𝑙 ,𝑦𝑟∈y𝑟
𝑥′=𝑥′

𝑙
∪∗ 𝑥′𝑟 s.t. 𝑥′

𝑙
∈x′

𝑙
,𝑥′𝑟∈x′𝑟

𝑦′=𝑦′
𝑙
∪∗ 𝑦′𝑟 s.t. 𝑦′

𝑙
∈y′

𝑙
,𝑦′𝑟∈y′𝑟

∑
𝜑𝑙 ,𝑙 :𝑥𝑙�𝑥′𝑙
𝜑𝑙 ,𝑟 :𝑥𝑟�𝑦′𝑙
𝜑𝑟,𝑙 :𝑦𝑙�𝑥′𝑟
𝜑𝑟,𝑟 :𝑦𝑟�𝑦′𝑟

♣

=
∑

x𝑙 ,x𝑟 ,y𝑙 ,y𝑟 s.t.

x𝑙∗x𝑟=x, y𝑙∗y𝑟=y
x𝑙∗y𝑙=x′ , x𝑟∗y𝑟=y′

∑
𝑥=𝑥𝑙 ∪∗ 𝑥𝑟 s.t. 𝑥𝑙∈x𝑙 ,𝑥𝑟∈x𝑟
𝑦=𝑦𝑙 ∪∗ 𝑦𝑟 s.t. 𝑦𝑙∈y𝑙 ,𝑦𝑟∈y𝑟
𝑥′=𝑥′

𝑙
∪∗ 𝑥′𝑟 s.t. 𝑥′

𝑙
∈x′

𝑙
,𝑥′𝑟∈x′𝑟

𝑦′=𝑦′
𝑙
∪∗ 𝑦′𝑟 s.t. 𝑦′

𝑙
∈y′

𝑙
,𝑦′𝑟∈y′𝑟

gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟
A ⊙ dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A .

by the definition of composition of isogmentations (which does

not depend on the chosen representative); the observation above;

reorganizing the sum by symmetry classes; and again via the

definition of composition of isogmentations.

This is sufficient to ensure that 𝛿A ⊙ 𝜇A and gA ⊙ dA have the same

isogmentations, but not that they occur with the same coefficient.

Quantitatively. Again, we need to introduce a new notation.

Notation: If 𝑥 = 𝑦 ∪∗ 𝑧 with 𝑦 ∈ y and 𝑧 ∈ z, we write 𝑥 ◀ y, z.

But there may be several splittings of 𝑥 into y and z, i.e. pairs (𝑦, 𝑧) such

that 𝑥 = 𝑦 ∪∗ 𝑧 with 𝑦 ∈ y and 𝑧 ∈ z. We write |𝑥 ◀ y, z| the number of

such pairs. It is easy to see that this is invariant under symmetry, thus

we may write |x ◀ y, z| for |𝑥 ◀ y, z| for any 𝑥 ∈ x.

Given this definition, Lemma 8.4 rewrites as

Corollary 8.5 – Qualitative behavior with splittings

Consider an arena A, and x, y, x′, y′ ∈ Pos(A). Then,

𝜹x,y
A ⊙ 𝝁x′ ,y′

A =
∑

x𝑙 ,x𝑟 ,y𝑙 ,y𝑟 s.t.

x𝑙∗x𝑟=x, y𝑙∗y𝑟=y
x𝑙∗y𝑙=x′ , x𝑟∗y𝑟=y′

𝑠
x,y
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟 · gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A ⊙ dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟
A ,

where for each x𝑙 , x𝑟 , y𝑙 , y𝑟 we note:

𝑠
x,y
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟

def

= |x ◀ x𝑙 , x𝑟 | |y ◀ y𝑙 , y𝑟 | |x′ ◀ x𝑙 , x𝑟 | |y′ ◀ y𝑙 , y𝑟 | .

To conclude the proof, the next key observation is:



178 8 PCG and Resource-calculus

Lemma 8.6 – Splitting symmetries

Consider an arena A with x, y ∈ Pos(A). Then,

♯Sym (x ∗ y) = |x ∗ y ◀ x, y| × ♯Sym (x) × ♯Sym (y) .

Proof. Fix arbitrary 𝑥 ∈ x and 𝑦 ∈ y that we assume disjoint, and

𝑧 = 𝑥 ∪∗ 𝑦 ∈ x ∗ y. The set of symmetries on x ∗ y is clearly in bĳection

with the set of symmetries

𝜑 : 𝑧 � 𝑥 ∗ 𝑦

which we shall study. As in the lemma above, such a symmetry

sends some events of 𝑧 to 𝑥 and some to 𝑦; this induces a splitting

𝑧 = 𝑥′∪∗ 𝑦′ with induced 𝜑𝑥 : 𝑥′ � 𝑥 and 𝜑𝑦 : 𝑦′ � 𝑦, so that 𝑥′ ∈ x
and 𝑦′ ∈ y. Conversely, any such splitting of 𝑧 with accompanying

symmetries yields a symmetry 𝑧 � 𝑥 ∗ 𝑦. From this it is straight-

forward to obtain a bĳection witnessing the announced equality

(keeping in mind that we may fix in advance a chosen 𝜅𝑥 : 𝑥 � x
for all 𝑥 ∈ x, so as to bridge between symmetries 𝑥′ � 𝑥 and

endosymmetries x � x).

Finally, we prove the exchange law of bialgebras:

Lemma 8.7 – Exchange law

Consider an arena A. Then,

𝛿A⊙ 𝜇A = gA⊙ dA .

Proof. We have:

𝛿A ⊙ 𝜇A

=
∑

x,y∈Pos(A)
x′ ,y′∈Pos(A)

1

𝑆(x, y, x′, y′) · 𝜹
x,y
A ⊙ 𝝁x′ ,y′

A

=
∑

x,y∈Pos(A)
x′ ,y′∈Pos(A)

∑
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟 s.t.

x𝑙∗x𝑟=x, y𝑙∗y𝑟=y
x𝑙∗y𝑙=x′ , x𝑟∗y𝑟=y′

𝑠
x,y
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟

𝑆(x, y, x′, y′) · gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟
A ⊙ dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A

=
∑

x𝑙 ,x𝑟∈Pos(A)
y𝑙 ,y𝑟∈Pos(A)

𝑠
x,y
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟

𝑆(x𝑙 ∗ x𝑟 , y𝑙 ∗ y𝑟 , x𝑙 ∗ y𝑙 , x𝑟 ∗ y𝑙)
· gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A ⊙ dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟
A

=
∑

x𝑙 ,x𝑟∈Pos(A)
y𝑙 ,y𝑟∈Pos(A)

1

𝑆(x𝑙 , x𝑟 , y𝑙 , y𝑟)2
· gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A ⊙ dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟
A

=

( ∑
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟∈Pos(A)

1

𝑆(x𝑙 , x𝑟 , y𝑙 , y𝑟)
· gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A

)
⊙

( ∑
x𝑙 ,x𝑟 ,y𝑙 ,y𝑟∈Pos(A)

1

𝑆(x𝑙 , x𝑟 , y𝑙 , y𝑟)
· dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A

)
= gA⊙ dA



8.1 PCG is a resource category 179

𝛿

𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

= 𝛿 𝛿

𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

𝜇

𝐴 𝐵

𝐴 𝐵 𝐴 𝐵

= 𝜇 𝜇

𝐴 𝐵 𝐴 𝐵

𝐴 𝐵

Figure 7.3: Compatibility of (co)monoids with the monoidal structure

Reminder: For any arena A, we note

Conf•(A) the pointed, or well-opened, con-

figurations on A – that is, the configura-

tions with a unique minimal event.

Likewise, we note Pos•(A) for the pointed
positions on A, i.e. the isomorphism

classes of pointed configurations.

by unfolding the definition of 𝛿A and 𝜇A; then using Corollary

8.5; then reindexing the sum in the obvious way; then applying

Lemma 8.6; and finally by linearity, observing that any composition

gx𝑙 ,y𝑙 ,x𝑟 ,y𝑟
A ⊙ dx𝑙 ,y𝑙 ,x𝑟 ,y𝑟

A where one of x𝑙 = x′
𝑙
, y𝑙 = x′𝑟 , x𝑟 = y′

𝑙
and y𝑟 = y′𝑟

does not hold is null.

8.1.4 Compatibility

Finally, we prove that the bialgebra structure is compatible with the

monoidal structure of PCG.

Lemma 8.8 – Compatibility

For any arena A, the bialgebra structure (𝛿A , 𝜀A , 𝜇A , 𝜂A) is com-

patible with the monoidal structure of PCG, in the sense that the

morphisms satisfy:

co-unitor with tensor: 𝜀𝐴⊗𝐵 = 𝜆𝐼 ⊙ (𝜀𝐴 ⊗ 𝜀𝐵)
unitor with tensor: 𝜂𝐴⊗𝐵 =

(
𝜂𝐴 ⊗ 𝜂𝐵

)
⊙ 𝜆𝐼

(co-)unitors with unit: 𝜀𝐼 = 𝜂𝐼 = id𝐼

and the equations of Figure 7.3.

Proof. (co)-unitor with tensor. Both cases are symmetric; clear by

definition and computation of the composition.

(co)-unitor with unit. By definition, we have 𝜀I = 1I⊢I = idI = 𝜂I .

(co)-multiplication and tensor. Both cases are symmetric; clear

using lemmas on renaming.

8.1.5 Pointed identities

We define the pointed identities of PCG.

Definition 8.9 – Pointed identities in PCG

For any arena A, we define the pointed identity id•A : A ⊢ A as:

id•A
def

=
∑

x ∈ Pos•(A)

1

♯Sym (x) · ccx .



180 8 PCG and Resource-calculus

Reminder: For any arena A, we note

Aug•(A) the pointed, or well-opened, aug-

mentations on A – that is, the augmenta-

tions with a unique minimal event.

Likewise, we note Isog•(A) for the pointed
isogmentations on A, i.e. the isomor-

phism classes of pointed augmentations.

Reminder: A pointed identity on A is a

endomorphism on A which is

▶ idempotent,

▶ non-erasable: 𝜀𝐴 ◦ id•
𝐴
= 0,

▶ non-erasing: id•
𝐴
◦ 𝜂𝐴 = 0,

▶ non-duplicable:

𝛿𝐴◦id•𝐴 =
(
id•𝐴 ⊗ 𝜂𝐴

)
+
(
𝜂𝐴 ⊗ id•𝐴

)
,

▶ non-duplicative:

id•𝐴◦𝜇𝐴 =
(
id•𝐴 ⊗ 𝜀𝐴

)
+
(
𝜀𝐴 ⊗ id•𝐴

)
.

Before checking that id•A is a pointed identity in PCG, we give an alter-

nate characterisation, using the restriction of strategies to their pointed

isogmentations.

Definition 8.10 – Trimmed strategies

Consider arenas A, B and a strategy 𝜎 : A ⊢ B. The restriction of 𝜎
to well-opened isogmentations, or trimming of 𝜎, is the strategy:

𝜎•
def

=
∑

q ∈ Isog•(A⊢B)
𝜎(q) · q .

Then it is clear that the pointed identity on A is the trimming of the

identity on A.

Lemma 8.11 – Alternate characterisation of id•A

For any arena A, we have id•A = (idA)•.

More generally, we show that pointed morphisms (in the categorical sense)

are pointed strategies (in the sense that all the isogmentations in their

support are pointed).

Lemma 8.12

Consider arenas A, B and a strategy 𝜎 : A ⊢ B. Then:

id•B ⊙ 𝜎 = 𝜎• .

Let us check that id•A satisfies the axioms of a pointed identity.

Lemma 8.13

For any arena A, id•A is a pointed identity.

Proof. Idempotence. Direct by Lemmas 8.12 and 8.11.

Non-erasable. By definition of 𝜀A:

𝜀A ⊙ id•A = 1A⊢I ⊙ id•A .

But the only isogmentation in 1A⊢I is 0 the empty isogmentation,

and the configuration 𝑥
0
A is not pointed, hence 1A⊢I ⊙ id•A = 0A⊢I.

Non-erasing. We have:

id•A ⊙ 𝜂A = id•A ⊙ 1I⊢A = (1I⊢A)• = 0I⊢A

by definition of 𝜂A and Lemma 8.12.

Non-duplicable. By definition of 𝛿A:

𝛿A ⊙ id•A = (idA⊗A ⋉ cA) ⊙ id•A .

Any isogmentation q ∈ supp(𝛿A) is of the form (q1 ⊗ q2) ⋉ cA, where



8.1 PCG is a resource category 181

both q𝑖 ’s are copycats. So the left configuration 𝑥
q
A is pointed iff q is

of the form (q1 ⊗ 0) ⋉ cA with q1 pointed, or (0 ⊗ q2) ⋉ cA with q2

pointed. Computing the composition, we obtain:

(idA⊗A ⋉ cA) ⊙ id•A =
(
id•A ⊗ 𝜂A

)
+

(
𝜂A ⊗ id•A

)
.

Non-duplicative. We have:

id•A ⊙ 𝜇A = id•A ⊙ (cA ⋊ idA⊗A) = (cA ⋊ idA⊗A)•

by definition of 𝜇A and Lemma 8.12. But any q ∈ supp(𝜇A) is of the

form cA ⋊ (q1 ⊗ q2), so pointed isogmentations of 𝜇A are either of

the form cA ⋊ (q1 ⊗ 0)with q1 pointed, or of the form cA ⋊ (0 ⊗ q2)
with q2 pointed. Computing the composition, we obtain:

(cA ⋊ idA⊗A)• =
(
id•A ⊗ 𝜀A

)
+

(
𝜀A ⊗ id•A

)
.

8.1.6 Closed structure

We already know that PCG is a SMCC from Theorem 6.63. We need

to check that Λ is compatible with the pointed identity as required by

Definition 7.6.

First, remark that since Λ preserves well-openedness for isogmentations,

it is immediate that it also preserves trimming:

for any 𝜎 : G ⊗ A ⊢ B, ΛG,A,B (𝜎•) = (ΛG,A,B(𝜎))• .

From this we easily deduce the next lemma.

Lemma 8.14 – Compatibility of Λ with id• in PCG

Consider two arenas A, B. We have:

id•A⇒B = ΛA⇒B,A,B
(
id•B ⊙ evA,B

)
.

Proof. For any A, B, we have

ΛA⇒B,A,B
(
id•B ⊙ evA,B

)
= ΛA⇒B,A,B

(
(evA,B)•

)
(Lemma 8.12)

= (ΛA⇒B,A,B (evA,B))• (Λ preserves trimming)

= (idA⇒B)• (Definition of ev)

= id•A⇒B (Lemma 8.11)

Hence PCG has the desired structure, and we conclude:

Theorem 8.15 – Closed structure

PCG is a closed resource category.



182 8 PCG and Resource-calculus

JΓ ⊢Tm 𝜆𝑥.𝑠 : 𝐴→ 𝐵K def

= ΛJΓK,J𝐴K,J𝐵K(JΓ, 𝑥 : 𝐴 ⊢Tm 𝑠 : 𝐵K ◦!JΓK,J𝑥:𝐴K)
JΓ ⊢Tm 𝑥 ®𝑡 : 𝛼K def

= evJ ®𝐴K,J𝛼K ◦ ⟨⟨⟨id
•
J ®𝐴K⇒𝑜

◦ var
Γ
𝑥 , ⟨|JΓ ⊢Sq ®𝑡 :

®𝐴K|⟩⟩⟩⟩

JΓ ⊢Tm 𝑠 𝑡 : 𝐵K def

= evJ𝐴K,J𝐵K ◦ ⟨⟨⟨JΓ ⊢Tm 𝑠 : 𝐴→ 𝐵K,ΠJΓ ⊢Bg 𝑡 : 𝐴K⟩⟩⟩
JΓ ⊢Bg [𝑠1 , . . . , 𝑠𝑛] : 𝐴K def

= [ JΓ ⊢Tm 𝑠𝑖 : 𝐴K | 1 ≤ 𝑖 ≤ 𝑛 ]
JΓ ⊢Sq ⟨𝑠1 , . . . , 𝑠𝑛⟩ :

®𝐴K def

= ⟨ JΓ ⊢Bg 𝑠𝑖 : 𝐴𝑖K | 1 ≤ 𝑖 ≤ 𝑛 ⟩

Figure 7.7: Interpretation of the resource calculus

∥Γ ⊢Tm 𝜆𝑥.𝑠 : 𝐴→ 𝐵∥Tm
def

= Λ
Isog•
JΓK,J𝐴K,J𝐵K (∥Γ, 𝑥 : 𝐴 ⊢Tm 𝑠 : 𝐵∥Tm)

∥Γ ⊢Tm 𝑥 ®𝑡 : 𝛼∥Tm
def

= □𝑖(∥Γ ⊢Sq ®𝑡 :
®𝐴∥Sq)

∥Γ ⊢Bg [𝑠1 , . . . , 𝑠𝑛] : 𝐴∥Bg
def

= ΠIsog[ ∥Γ ⊢Tm 𝑠𝑖 : 𝐴∥Tm | 1 ≤ 𝑖 ≤ 𝑛 ]
∥Γ ⊢Sq ⟨𝑠1 , . . . , 𝑠𝑛⟩ :

®𝐴∥Sq
def

= ⟨ ∥Γ ⊢Bg 𝑠𝑖 : 𝐴𝑖∥Bg | 1 ≤ 𝑖 ≤ 𝑛 ⟩Isog

Figure 5.7: Isomorphism for normal forms of the resource calculus

8.2 Compatibility with normal forms

Finally, we show that, up to the bĳection ∥−∥Tm between normal resource

terms and isogmentations, the interpretation of a resource term in the

resource category PCG coincides with its normal form.

Proposition 8.16 – Compatibility with normal forms

Consider 𝑠 ∈ Tmnf(Γ;𝐴). Then J𝑠K is the sum having ∥𝑠∥Tm with

coefficient 1, and 0 everywhere else.

Proof. Recall the interpretation of the resource calculus in a resource

category given in Figure 7.7. Restricting to normal forms rules out

the third clause. We inductively prove the remaining cases:

▶ if 𝑠 ∈ Tmnf(Γ;𝐴), then J𝑠K = ∥𝑠∥Tm;

▶ if 𝑠 ∈ Bgnf(Γ;𝐴), then ΠJ𝑠K = ∥𝑠∥Bg;

▶ if ®𝑠 ∈ Sqnf(Γ;
®𝐴), then ⟨| J®𝑠K |⟩ = ∥®𝑠∥Sq.

The identity follows immediately from the induction hypothesis

for sequences, bags and abstraction terms, since the interpretation

matches the bĳection for normal forms described in Figure 5.7.

A1 ⊗ . . . ( ®B𝑖
⊗ ⇒ o) . . . ⊗ A𝑛 ⊢ o

𝑞

q−
q+
𝑖

𝑎−
1

. . . 𝑎−
𝑘

Figure 5.6: □𝑖(𝑞).

The case of a fully applied variable is less obvious. Recall the

construction of the 𝑖-lifting, as presented in Figure 5.6.

We want this construction to match:

evJ®𝐵K,𝑜 ◦ ⟨⟨⟨id
•
J®𝐵K⇒𝑜

◦ var
Γ
𝑥 , ⟨|JΓ ⊢Sq ®𝑡 :

®𝐵K|⟩⟩⟩⟩ .



8.3 Conclusion 183

Let us look at the behavior of evJ®𝐵K,J𝛼K in PCG. We know that:

evJ®𝐵K,o = Λ−1

J®𝐵K⇒o,J®𝐵K,o

(
idJ®𝐵K⇒o

)
.

(
®B𝑖
⊗ ⇒ o

)
⊗ ®B𝑖

⊗ ⊢ o

q−
q+

left right

Figure 8.2: An isogmentation in evJ ®𝐴K,o.

Thus the isogmentations in evJ®𝐵K,o all look as in Figure 8.2, where

the left and right sides are copies of the same position, with causal

links given by copycat as usual. When composing evJ®𝐵K,o with

⟨⟨⟨id•
J®𝐵K⇒𝑜

◦ var
Γ
𝑥 , ⟨|JΓ ⊢Sq ®𝑡 :

®𝐵K|⟩⟩⟩⟩ ,

the right side will interact with ⟨|JΓ ⊢Sq ®𝑡 :
®𝐵K|⟩ – which, by induction

hypothesis, is ∥Γ ⊢Sq ®𝑡 :
®𝐵∥Sq. After the hiding, we are left with

exactly the 𝑖-lifting construction.

It immediately follows that our interpretation in PCG computes a repre-

sentation of the normal form:

Theorem 8.17 – Interpretation and normal form

If 𝑠 ∈ Tm(Γ;𝐴) has normal form

∑
𝑖∈𝐼 𝑠𝑖 , then J𝑠K =

∑
𝑖∈𝐼 ∥𝑠𝑖∥Tm.

8.3 Conclusion

Thanks to the interpretation of resource terms from Chapter 7, we only

had to check that PCG is indeed a closed resource category to obtain

the interpretation in PCG. Moreover, this interpretation is not discon-

nected from our previous construction linking PCG and the resource

calculus! Although we define the interpretation of a term 𝑠 with a purely

categorical construction, we show that this interpretation is the sum of

isogmentations obtained via the isomorphism between normal terms and

PCG from the normal form of 𝑠.





Conclusion



resource

term 𝑠

J𝑠K

NF(𝑠) = ∑
𝑠′
𝑖

∑ ∥𝑠′
𝑖
∥=

Figure 9: The interpretation behaves

nicely!

Conclusion

We presented the construction of Pointer Concurrent Games, as well as

results regarding its connections with HO games, the relational model,

and the resource calculus.

PCG and HO games. Augmentations in PCG were constructed to match

plays of HO quotiented by homotopy. There is a bĳection:

Plays(−) : Isog(A) � VisPlays+(A)/∼𝐸 [Theorem 3.27].

We showed that the equivalent of innocent strategies in HO is either:

▶ −-linear isogmentations, for meagre strategies [Theorem 3.40];

▶ or isoexpansions of −-linear isogmentations, for fat strategies.

Finally, we showed that this static correspondence extends to the cate-

gorical structure of PCG: Plays⇒(−) is a strict cartesian closed functor

between FII and HOInn
𝑓

[Theorem 6.81].

PCG and Rel!. We showed that meagre innocent isogmentations in PCG
are positionally injective [Theorem 4.31]. This result translates to total finite

innocent strategies in HO [Theorem 4.32].

PCG and the resource calculus. We have a direct isomorphism between

normal resource terms and isogmentations [Theorem 5.18]. Thanks

to the interpretation of resource terms in a closed resource category

[Theorem 7.20], we have a sound interpretation of resource terms in

PCG. Moreover, the interpretation of a resource term is the sum of the

isogmentations obtained from its normal form via the isomorphism

for normal terms [Theorem 8.17], which gives us the diagram from

Figure 9.

Perspectives: ongoing and future works.

Taylor expansion. The diagram from Figure 9 is the first step in studying

the links between the Taylor expansion of 𝜆-terms and game semantics.

Given a 𝜆-term, its Taylor expansion is the sum of its approximations as

resource terms. We want to extend the results from Figure 9 to show:

𝑀 T(𝑀) NF(T(𝑀))

J𝑀K JT(𝑀)K ∥NF(T(𝑀))∥= =

(1) (2)

where 𝑀 is a 𝜆-term, T(𝑀) is its Taylor expansion, and NF(−) is the

normalisation.



Conclusion 187

[29]: Ker, Nickau, and Ong (2002), ‘Inno-

cent game models of untyped lambda-

calculus’

[6]: Blondeau-Patissier, Clairambault,

and Vaux Auclair (2025), Extensional Tay-
lor Expansion

[2]: Barendregt (1984), The lambda calculus
- its syntax and semantics

[21]: Ehrhard and Regnier (2006), ‘Böhm

Trees, Krivine’s Machine and the Taylor

Expansion of Lambda-Terms’

[41]: Vaux (2019), ‘Normalizing the Taylor

expansion of non-deterministic 𝜆-terms,

via parallel reduction of resource vectors’

[34]: Nakajima (1975), ‘Infinite normal

forms for the lambda - calculus’

[2]: Barendregt (1984), The lambda calculus
- its syntax and semantics

We need to define T(−) as a Taylor expansion sending simply-typed

𝜆-terms to terms of the simply-typed, 𝜂-long resource calculus – then (2)
is obtained from Figure 9.

To show that (1) commutes, we also need to describe the interpretation of

𝜆-terms in PCG. Given a closed resource category, how do we construct a

cartesian closed category – which is the categorical structure usually needed

for the target of the interpretation of 𝜆-calculus? This is the subject of

ongoing work.

Untyped calculi. For now, we focused on typed 𝜆-calculus. Indeed,

augmentations and strategies live in arenas, so in order to interpret

untyped 𝜆-terms, we need a way to “type” them. This alone is not an

obstacle: following [29], untyped 𝜆-terms can be interpreted in HO games

as strategies on a universal arena.

However, the correspondence between resource terms and game semantics

requires the resource terms to be 𝜂-expanded – but what would it mean

for an untyped term to be 𝜂-expanded? Although this document only

presents results in the typed setting, we are – at the date of writing

– working on an untyped extensional resource calculus. The details are

presented in [6] (unpublished yet); we give but a brief overview here.

In the syntax of the extensional resource calculus, we allow for infinite

sequences of abstractions, and for applications to infinite sequences

of (almost always empty) bags. Intuitively, we replace 𝜂-longness in

the typed setting with infinite 𝜂-expansion in the untyped setting. The

resulting terms are called extensional. We define Text(−) the extensional

Taylor expansion, sending an untyped 𝜆-term to a linear combination of

extensional resource terms.

In the usual 𝜆-calculus, the structure of a 𝜆-term is captured by its Böhm
tree (see [2]). The normal form of the Taylor expansion of a term 𝑀 is the

Taylor expansion of its Böhm tree:

NF(𝒯 (𝑀)) = 𝒯 (ℬ(𝑀))

as proved first in [21, Corollary 1] or in a more direct way in [41].

Nakajima trees (defined in [34]) correspond to Böhm trees up to infinite

𝜂-expansion [2, Exercise 19.4.4]. The extensional Taylor expansion has

the same link with Nakajima trees as the usual Taylor expansion with

Böhm trees:

NF(Text(𝑀)) = Text(𝒩 (𝑀))

This extensional resource calculus allows us to extend the connections

between Taylor expansions and game semantics made in a typed setting

to the untyped setting.





Appendices





Bibliography

Here are the references in alphabetical order.

[1] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. ‘Full Abstraction for PCF’. In: Inf.
Comput. 163.2 (2000), pp. 409–470. doi: 10.1006/inco.2000.2930 (cited on page 2).

[2] Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics. Vol. 103. Studies in logic and

the foundations of mathematics. North-Holland, 1984 (cited on pages 3, 16, 187).

[3] Lison Blondeau-Patissier. ‘Resource Categories from Differential Categories’. In: 35es Journées Franco-
phones des Langages Applicatifs (JFLA 2024). Saint-Jacut-de-la-Mer, France, Jan. 2024 (cited on page 90).

[4] Lison Blondeau-Patissier and Pierre Clairambault. ‘Positional Injectivity for Innocent Strategies’. In:

6th International Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24,
2021, Buenos Aires, Argentina (Virtual Conference). Ed. by Naoki Kobayashi. Vol. 195. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 17:1–17:22. doi: 10.4230/LIPIcs.FSCD.2021.17

(cited on page 38).

[5] Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. ‘Strategies as Resource Terms,

and Their Categorical Semantics’. In: 8th International Conference on Formal Structures for Computation
and Deduction (FSCD 2023). Ed. by Marco Gaboardi and Femke van Raamsdonk. Vol. 260. Leibniz

International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2023, 13:1–13:22. doi: 10.4230/LIPIcs.FSCD.2023.13 (cited on page 90).

[6] Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. Extensional Taylor Expansion.

2025. url: https://arxiv.org/abs/2305.08489 (cited on page 187).

[7] Richard Blute, J. Robin B. Cockett, and Robert A. G. Seely. ‘Differential categories’. In: Mathematical
Structures in Computer Science 16 (2006), pp. 1049–1083 (cited on pages 8, 15, 147, 165, 167, 168, 171).

[8] Richard Blute et al. ‘Differential Categories Revisited’. In: Appl. Categorical Struct. 28.2 (2020), pp. 171–

235. doi: 10.1007/s10485-019-09572-y (cited on pages 8, 165–169, 171).

[9] Pierre Boudes. ‘Thick Subtrees, Games and Experiments’. In: TLCA. Vol. 5608. Lecture Notes in

Computer Science. Springer, 2009, pp. 65–79 (cited on pages 4, 41, 42).

[10] Gérard Boudol. ‘The lambda-calculus with multiplicities’. In: CONCUR’93. Ed. by Eike Best. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1993, pp. 1–6 (cited on page 3).

[11] Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. ‘A semantics for lambda calculi with

resources’. In: Mathematical Structures in Computer Science 9 (1999), pp. 437–482 (cited on page 3).

[12] Simon Castellan and Pierre Clairambault. Disentangling Parallelism and Interference in Game Semantics.
2021. url: https://arxiv.org/abs/2103.15453 (cited on page 105).

[13] Simon Castellan et al. ‘The concurrent game semantics of Probabilistic PCF’. In: Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018.

Ed. by Anuj Dawar and Erich Grädel. ACM, 2018, pp. 215–224. doi: 10.1145/3209108.3209187 (cited

on page 42).

[14] Alonzo Church. ‘A Formulation of the Simple Theory of Types’. In: The Journal of Symbolic Logic 5.2

(1940), pp. 56–68. (Visited on 07/29/2025) (cited on page 3).

[15] Pierre Clairambault. ‘Causal Investigations in Interactive Semantics’. Habilitation à diriger des

recherches. Aix-Marseille Université, 2024 (cited on page 6).

[16] Pierre Clairambault and Marc de Visme. ‘Full abstraction for the quantum lambda-calculus’. In: Proc.
ACM Program. Lang. 4.POPL (2020), 63:1–63:28. doi: 10.1145/3371131 (cited on page 42).

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.4230/LIPIcs.FSCD.2021.17
https://doi.org/10.4230/LIPIcs.FSCD.2023.13
https://arxiv.org/abs/2305.08489
https://doi.org/10.1007/s10485-019-09572-y
https://arxiv.org/abs/2103.15453
https://doi.org/10.1145/3209108.3209187
https://doi.org/10.1145/3371131


[17] V. Danos, H. Herbelin, and L. Regnier. ‘Game semantics and abstract machines’. In: Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science. 1996, pp. 394–405. doi: 10.1109/LICS.1996.

561456 (cited on page 31).

[18] Daniel de Carvalho. ‘The Relational Model Is Injective for Multiplicative Exponential Linear Logic’.

In: 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016,
Marseille, France. 2016, 41:1–41:19. doi: 10.4230/LIPIcs.CSL.2016.41 (cited on pages 5, 6, 65).

[19] Thomas Ehrhard. ‘The Scott model of linear logic is the extensional collapse of its relational model’. In:

Theor. Comput. Sci. 424 (2012), pp. 20–45. doi: 10.1016/j.tcs.2011.11.027 (cited on page 41).

[20] Thomas Ehrhard and Laurent Regnier. ‘The differential lambda-calculus’. In: Theoretical Computer
Science 309.1 (2003), pp. 1–41. doi: https://doi.org/10.1016/S0304-3975(03)00392-X (cited on

pages 8, 165).

[21] Thomas Ehrhard and Laurent Regnier. ‘Böhm Trees, Krivine’s Machine and the Taylor Expansion of

Lambda-Terms’. In: Logical Approaches to Computational Barriers. Ed. by Arnold Beckmann et al. Springer

Berlin Heidelberg, 2006, pp. 186–197 (cited on page 187).

[22] Thomas Ehrhard and Laurent Regnier. ‘Uniformity and the Taylor expansion of ordinary lambda-terms’.

In: Theoretical Computer Science 403.2-3 (2008), pp. 347–372. doi: 10.1016/j.tcs.2008.06.001 (cited

on pages 8, 19, 21).

[23] Marcelo P. Fiore. ‘Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear

Logic’. In: Typed Lambda Calculi and Applications. Ed. by Simona Ronchi Della Rocca. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2007, pp. 163–177 (cited on page 167).

[24] Jean-Yves Girard. ‘Linear logic’. In: Theoretical Computer Science 50.1 (1987), pp. 1–101. doi: https:

//doi.org/10.1016/0304-3975(87)90045-4 (cited on pages 3, 166).

[25] Jean-Yves Girard. ‘Normal functors, power series and 𝜆-calculus’. In: Ann. Pure Appl. Log. 37 (1988),

pp. 129–177 (cited on pages 3, 4).

[26] Russ Harmer. Innocent game semantics. Lecture notes. 2006. url: https://perso.ens-lyon.fr/

russell.harmer/GS.pdf (cited on page 33).

[27] J. M. E. Hyland and C.-H. Luke Ong. ‘On Full Abstraction for PCF: I, II, and III’. In: Inf. Comput. 163.2

(2000), pp. 285–408. doi: 10.1006/inco.2000.2917 (cited on pages 2, 23, 33).

[28] André Joyal and Ross Street. ‘The geometry of tensor calculus, I’. In: Advances in Mathematics 88 (1991),

pp. 55–112 (cited on page 14).

[29] Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. ‘Innocent game models of untyped lambda-

calculus’. In: Theor. Comput. Sci. 272.1-2 (2002), pp. 247–292. doi: 10.1016/S0304-3975(00)00353-4

(cited on page 187).

[30] David P. Kierstead. ‘A Semantics for Kleene’s j-expressions’. In: The Kleene Symposium. Ed. by Jon

Barwise, H. Jerome Keisler, and Kenneth Kunen. Vol. 101. Studies in Logic and the Foundations of

Mathematics. Elsevier, 1980, pp. 353–366. doi: https://doi.org/10.1016/S0049-237X(08)71268-0

(cited on page 44).

[31] Saunders Mac Lane. ‘Natural Associativity and Commutativity’. In: Rice Institute Pamphlet - Rice
University Studies 49 (1963), pp. 28–46 (cited on page 14).

[32] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics, Vol. 5.

New York: Springer-Verlag, 1971, pp. ix+262 (cited on pages 13, 14, 147).

[33] Paul-André Melliès. ‘Asynchronous games 2: The true concurrency of innocence’. In: Theor. Comput.
Sci. 358.2-3 (2006), pp. 200–228. doi: 10.1016/j.tcs.2006.01.016 (cited on pages 5, 35, 42, 43, 49).

[34] Reĳi Nakajima. ‘Infinite normal forms for the lambda - calculus’. In: Lambda-Calculus and Computer
Science Theory, Proceedings of the Symposium Held in Rome, Italy, March 25-27, 1975. Ed. by Corrado Böhm.

Vol. 37. Lecture Notes in Computer Science. Springer, 1975, pp. 62–82. doi: 10.1007/BFb0029519 (cited

on page 187).

https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://perso.ens-lyon.fr/russell.harmer/GS.pdf
https://perso.ens-lyon.fr/russell.harmer/GS.pdf
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1016/S0304-3975(00)00353-4
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71268-0
https://doi.org/10.1016/j.tcs.2006.01.016
https://doi.org/10.1007/BFb0029519


[35] Hanno Nickau. ‘Hereditarily Sequential Functionals’. In: Logical Foundations of Computer Science, Third
International Symposium, LFCS’94, St. Petersburg, Russia, July 11-14, 1994, Proceedings. Ed. by Anil Nerode

and Yuri V. Matiyasevich. Vol. 813. Lecture Notes in Computer Science. Springer, 1994, pp. 253–264.

doi: 10.1007/3-540-58140-5_25 (cited on page 2).

[36] Gordon D. Plotkin. ‘LCF Considered as a Programming Language’. In: Theoretical Computer Science 5.3

(1977), pp. 223–255. doi: 10.1016/0304-3975(77)90044-5 (cited on page 2).

[37] Dana S. Scott. ‘A Type-Theoretical Alternative to ISWIM, CUCH, OWHY’. In: Theoretical Computer
Science 121.1&2 (1993), pp. 411–440. doi: 10.1016/0304-3975(93)90095-B (cited on page 2).

[38] Robert A. G. Seely. ‘Linear Logic, ∗-Autonomous Categories and Cofree Coalgebras’. In: 1989 (cited on

page 168).

[39] Peter Selinger. ‘A Survey of Graphical Languages for Monoidal Categories’. In: New Structures for
Physics. Springer Berlin Heidelberg, 2010, pp. 289–355. doi: 10.1007/978-3-642-12821-9_4 (cited on

page 14).

[40] Takeshi Tsukada and C.-H. Luke Ong. ‘Plays as Resource Terms via Non-idempotent Intersection

Types’. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16,
New York, NY, USA, July 5-8, 2016. Ed. by Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM,

2016, pp. 237–246. doi: 10.1145/2933575.2934553 (cited on pages 5, 6, 21, 35, 44, 91).

[41] Lionel Vaux. ‘Normalizing the Taylor expansion of non-deterministic 𝜆-terms, via parallel reduction of

resource vectors’. In: Logical Methods in Computer Science Volume 15, Issue 3 (2019). doi: 10.23638/lmcs-

15(3:9)2019 (cited on page 187).

https://doi.org/10.1007/3-540-58140-5_25
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1145/2933575.2934553
https://doi.org/10.23638/lmcs-15(3:9)2019
https://doi.org/10.23638/lmcs-15(3:9)2019


Alphabetical Index

𝛼-equivalence, 17

𝛽-reduction, 18

𝜂-expansion, 21

𝜂-long, 21

𝜆-term, 16

additive SMC, 147

alternating linearisation, 51

arena, 23

negative arena, 24

positive arena, 24

well-opened arena, 24

arrow of arenas, 25

ASMC, see additive SMC

associator, 13

augmentation, 45

−-linear augmentation, 47

pointed augmentation, 47

total augmentation, 47

augmentation isomorphism, 47

augmentation morphism, 46

bag, 19

bialgebra, 148

bisimulation

augmentations bisimulation, 71

bisimulation between non-isomorphic

augmentations, 72

bisimulation through an isomorphism, 71

events bisimulation, 71

branch, 57

cardinality, 67

clone, 76

co-multiplication, 16

co-pointed morphism, 149

co-unitor, 16

commutative comonoid, 16

commutative monoid, 15

comonoid, 16

composition (in HO), 33

composition of isogmentations, 112

composition of strategies (PCG), 114

composition via an isomorphism, 108

configuration, 39

−-linear configuration, 48

pointed configuration, 39

total configuration, 48

confluence, 18

context, 70

minimal context, 77

pointers-preserving context, 76

copycat augmentation, 114

copycat isogmentation, 115

copycat strategy, 115

copycat strategy (in HO), 34

currying isomorphism (in HO), 34

desequentialization, 40

desequentialization of an augmentation, 46

display map, 39

enumeration, 19

evaluation morphism (in HO), 34

event, 39

expansion, 61

characteristic expansion, 68

fat innocent expansion (fie), 62

fat innocent isoexpansion (fii), 62

fie, see fat innocent expansion

fii, see fat innocent isoexpansion

forest morphism, 41

fork, 67

homotopy, 49

homotopy equivalence, 49

homotopy relation, 49

immediate causality, 23

innocence, 31

interaction, 104

interaction (in HO), 32

interaction of strategies, 33

isoexpansion, 62

isogmentation, 47

−-linear isogmentation, 48

pointed isogmentation, 48

total isogmentation, 48

justifier, 46

left-unitor, 13

legal play, see play

length of a play, see length of a pointing string

length of a pointing string, 26

meagre innocent augmentation (mia), 55

meagre innocent isogmentation (mii), 55



mia, see meagre innocent augmentation

mii, see meagre innocent isogmentation

monoid, 15

monoidal category, 13

move, 23

initial move, 24

multiplication, 15

P-view, 29

P-view forest, 31

P-visibility, 29

partition, 19

𝑘-partition, 19

𝑘-partitioning, 19

pentagon identity, 13

play, 27

positive play, 27

well-opened play, 27

P-visible play, 29

plays of an augmentation, 52

pointed identity, 149

pointed morphism, 149

pointer, 26

pointing string, 26

polarity, 23

polarity function, 23

position, 40

−-linear position, 48

pointed position, 41

position of a play, 41

positions of a strategy, 41

total position, 48

positional injectivity, 44

positionality, 43

predecessor, 46

prefix, 26

negative prefix, 27

positive prefix, 27

product of arenas, 25

product of configurations, 94

projection (in HO), 34

relational model, 41

renaming, 127

resource bag, 20

resource category, 150

resource reduction, 20

resource substitution, 20

resource term, 20

right-unitor, 13

sequence, 19

simple types, 18

SMC, see symmetric monoidal category

SMCC, see symmetric monoidal closed category

strategy (in HO), 30

fat innocent strategy, 31

finite innocent strategy, 31

infinite innocent strategy, 31

innocent strategy, 31

meagre innocent strategy, 31

P-visible strategy, 30

partial strategy, 31

total strategy, 31

strategy (PCG), 113

string diagram, 14

substitution (𝜆-calculus), 17

symmetric monoidal category, 14

symmetric monoidal closed category, 14

symmetry (in a SMC), 14

symmetry (on configurations), 40

tensor, 13

tensor of augmentations, 124

thick subtree, 42

tree morphism, 41

triangle identity, 13

types, 18

underlying configuration, 46

unit, 13

unitor, 15

variable, 16

bound variable, 17

free variable, 17

fresh variable, 17



Nomenclature

Here we present several symbols that are used within the body of the document.

Categories

C, D Categories

𝑓 , 𝑔, ℎ Morphisms

𝐴, 𝐵, 𝐶 Objects

Calculus

𝑠, 𝑡 , 𝑢̄ Bags of resource terms

𝑀, 𝑁, 𝐿 Terms

Γ,Δ,Ω Contexts

𝑠, 𝑡 , 𝑢 Resource terms

𝑆, 𝑇,𝑈 Sums of resource terms

𝐴, 𝐵, 𝐶 Types

𝑥, 𝑦, 𝑧 Variables

®𝑠, ®𝑡 , ®𝑢 Sequences of resource terms

®𝐴, ®𝐵, ®𝐶 Sequences of types

Games

a, b, c Arena events

t, u, v Linearisations

A, B,C Arenas

𝑞, 𝑝, 𝑟 Augmentations

𝑥, 𝑦, 𝑧 Configurations

𝑎, 𝑏, 𝑐 Configuration or augmentation events

𝑢, 𝑣, 𝑤 Interactions

q, p, r Isogmentations

𝑠, 𝑡 Plays

x, y, z Positions

𝑓 , 𝑔, ℎ Renamings

𝜎, 𝜏 Strategies


	Page de titre
	Affidavit
	Liste de publications et participation aux conférences
	Résumé et mots clés
	Abstract and keywords
	Contents
	Introduction
	What is game semantics?
	About calculi
	Bridging the gap between models
	Contributions
	Outline

	Preliminaries
	Reminders: Categories, -calculus and Resource calculus
	Categorical Preliminaries

	Categorical Preliminaries
	Symmetric Monoidal Closed Categories
	String diagrams
	Monoids and Comonoids
	Lambda-calculus

	Lambda-calculus
	Terms of -calculus
	Free and bound variables
	Substitution
	Reduction
	Simple types
	Resource calculus

	Resource calculus
	Preliminaries on tuples and bags
	Terms of the resource calculus
	Substitution
	Resource reduction
	Typing rules
	Introduction to Hyland-Ong Games
	Arenas

	Arenas
	Definition
	Constructors on arenas
	Plays

	Plays
	Definition
	Views
	Strategies

	Strategies
	Definition
	Innocence
	Other properties of strategies: totality and finiteness
	Composition

	Composition
	HO and HOInn as categories

	HO and HOInn
	Links with the resource calculus

	Links with the resource calculus

	An introduction to Pointer Concurrent Games
	Static Pointer Concurrent Games: Configurations and Augmentations
	Relational Collapse

	Relational Collapse
	Configurations
	Positions
	Relational Model
	Positional Injectivity

	Positional Injectivity
	Positionality
	Positional Injectivity
	Augmentations

	Augmentations
	Definitions
	Isogmentations
	Additional Conditions on Augmentations
	Augmentations in PCG v. Plays in HO

	Augmentations in PCG v. Plays in HO
	Homotopy relation
	From plays to isogmentations
	From isogmentations to plays
	 is a bijection
	Meagre Innocent Strategies in PCG

	Meagre Innocent Strategies in PCG
	Meagre Innocent Augmentations and Isogmentations
	From innocent strategies to mii's
	From mii's to innocent strategies
	The isomorphism
	Fat Innocent Strategies in PCG

	Fat Innocent Strategies
	Expansions
	Fat Innocent (Iso)expansions
	The isomorphisms isog(-) and iexpMII(-) coincide
	A few words on Infinite Strategies

	A few words on Infinite Strategies
	Conclusion

	Conclusion
	Positional Injectivity, for PCG and for HO
	Duplicating Opponent Moves

	Duplicating Opp. Moves
	Proof idea
	Characteristic Expansions
	Bisimulation Relations

	Bisimulation Relations
	Bisimulations across an isomorphism
	Bisimulations between non-isomorphic augmentations
	Clones
	Total MIAs are Positionally Injective in PCG

	Pos. Inj. in PCG
	Positional Injectivity in HO

	Pos. Inj. in HO
	Total Finite Innocent Strategies are Positionally Injective in HO
	Beyond Total Finite Strategies
	Conclusion

	Conclusion

	Composition and Resource Calculus Semantics
	Augmentations are Normal Resource Terms
	Extensional simply-typed resource calculus

	Extensional simply-typed resource calculus
	Typing rules
	Reduction and substitution
	Normalisation
	A few additional PCG constructions

	A few additional PCG constructions
	Construction on arenas – HomGame
	Constructions on configurations
	The isomorphism

	The isomorphism
	Types and contexts
	Resource sequences
	Resource bags
	Currying
	Head occurrence
	The isomorphism
	Conclusion

	Conclusion
	Composition and Categorical Structure
	Composition for augmentations

	Composition for augmentations
	Interaction via an isomorphism
	Composition via an isomorphism
	Composing isogmentations
	Strategies and identities

	Strategies and identities
	Strategies
	Identities
	The categorical structure of PCG

	The categorical structure of PCG
	Associativity of the composition
	Neutrality of copycat
	PCG is a SMCC

	PCG is a SMCC
	Tensor
	Structural morphisms – intuitively
	Renamings
	Structural morphisms – formally
	Closed structure
	From qualitative PCG to HO

	From qualitative PCG to HO
	Arrowing
	Plays(-) and innocent strategies
	Identities
	Composition
	Functor between PCG and HO
	Conclusion and perspectives

	Conclusion and perspectives
	Resource Categories
	Definition

	Definition
	Additivity
	Bialgebras.
	Pointed Identity
	Resource Categories
	Closeness
	Properties of resource categories

	Properties of resource categories
	Constructions
	Bags of pointed morphisms
	Comonoid morphisms
	Interpretation and Soundness

	Interpretation and Soundness
	Interpretation
	Technical lemmas
	Substitution lemma
	Soundness
	How to build your own resource category

	How to build your own resource category
	Additive monoidal storage categories
	The construction
	What about closeness?
	Conclusion and perspectives

	Conclusion and perspectives
	PCG and Resource-calculus
	PCG is a resource category

	PCG is a resource category
	Additive structure
	Bialgebra laws
	Proof of the bialgebra distributivity law
	Compatibility
	Pointed identities
	Closed structure
	Compatibility with normal forms

	Compatibility with normal forms
	Conclusion

	Conclusion

	Conclusion
	Appendices
	Bibliography
	Alphabetical Index
	Nomenclature

