amU

Marseille Université

NNT : 2025AIXM0435

THESE DE DOCTORAT

Soutenue a AMU — Aix-Marseille Université
le 4 décembre 2025 par

Lison BLONDEAU-PATISSIER

Jeux concurrents a pointeurs et calcul a ressource
Pointer Concurrent Games and the Resource Calculus

Discipline Composition du jury
Mathematics
Giulio MANZONETTO Rapporteur
] Professeur des universités,
Ecole doctorale Paris Cité
Mathématiques et informatique (ED 184)
Guy McCUSKER Rapporteur

Laboratoire

Institut de mathématiques de Marseille
(I2M, UMR 7373)

Laboratoire d’Informatique et des Systemes Claudia FAGGIAN
(LIS, UMR 7020)

Professor of Computing,
University of Bath

Examinatrice
Chargée de recherche,
Paris Cité

Marie KERJEAN Examinatrice
Chargée de recherche,
Sorbonne Paris Nord

Stefano GUERRINI Président du jury
Professeur des universités,
Sorbonne Paris Nord

Lionel VAUX AUCLAIR Directeur de these
Maitre de conférences,
Aix-Marseille Université

Pierre CLAIRAMBAULT Co-directeur de these
Directeur de recherche,
Aix-Marseille Université

INSTITUT r
\#f! DE MATHEMATIQUES L 1 d

DE MARSEILLE TSN

Pointer Concurrent Games and the Resource Calculus

Disclaimer
This page is based on the corresponding page of Ken Arroyo Ohori’s thesis, with minimal changes.

No copyright
@@ This book is released into the public domain using the CCO code.
To the extent possible under law, I waive all copyright and related or neighbouring rights to this work.

To view a copy of the CCO code, visit http://creativecommons.org/publicdomain/zero/1.0/.

Colophon
This document was typeset with the help of KOMA-Script and I4TEX using the kaobook class.

http://creativecommons.org/publicdomain/zero/1.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/

Affidavit

I, undersigned, Lison Blondeau-Patissier, hereby declare that the work presented in this manuscript is my
own work, carried out under the scientific supervision of Pierre Clairambault and Lionel Vaux Auclair, in
accordance with the principles of honesty, integrity and responsibility inherent to the research mission.
The research work and the writing of this manuscript have been carried out in compliance with both the
french national charter for Research Integrity and the Aix-Marseille University charter on the fight against
plagiarism.

This work has not been submitted previously either in this country or in another country in the same or in a
similar version to any other examination body.

Lyon, 09/09/25

Lison Blondeau-Patissier

S{-

Liste de publications et participation aux
conférences

Liste des publications réalisées dans le cadre du projet de thése :

Revues

1. Strategies as Resources Terms, and Their Categorical Semantics, Lison Blondeau-Patissier, Pierre Clairambault
and Lionel Vaux Auclair. (Version longue de 3.)
Logical Methods in Computer Science (LMCS), 2025.
https://doi.org/10.46298/lmcs-21(4:9)2025.

Actes de conférences

2. Positional Injectivity for Innocent Strategies, Lison Blondeau-Patissier and Pierre Clairambault.
Formal Structures for Computation and Deduction (FSCD), 2021.
https://doi.org/10.4230/LIPIcs.FSCD.2021.17.

3. Strategies as Resource Terms, and Their Categorical Semantics, Lison Blondeau-Patissier, Pierre Clairambault
and Lionel Vaux Auclair.
Formal Structures for Computation and Deduction (FSCD), 2023.
https://doi.org/10.4230/LIPIcs.FSCD.2023.13.

4. Resource Categories from Differential Categories, Lison Blondeau-Patissier.
Journées Francophones des Langages Applicatifs (JFLA), 2024.
https://inria.hal.science/hal-04406440.

Pré-publications

5. Extensional Taylor Expansion, Lison Blondeau-Patissier, Pierre Clairambault and Lionel Vaux Auclair.
2025. https://doi.org/10.48550/arXiv.2305.08489.

Participation aux conférences et écoles d’été pendant la période de these :

Présentations lors de conférences

1. Formal Structures for Computation and Deduction (FSCD).
Juillet 2021, en ligne. https://fscd2021.dc.uba.ar.
Exposé : Positional Injectivity for Innocent Strategies.
2. Journées du GT Scalp.
Novembre 2021, Fontainebleau. https://www.irif.fr/gt-scalp/journees-2021.
Exposé : Positional Injectivity for Innocent Strategies.
3. Formal Structures for Computation and Deduction (FSCD).
Juillet 2023, Roma (Italie). https://easyconferences.eu/fscd2023.
Exposé : Strategies as Resource Terms, and Their Categorical Semantics.
4. Séminaire Chocola.
Septembre 2023, Lyon. https://chocola.ens- lyon.fr/events/meeting-2023-09-28.
Exposé : Strategies as Resource Terms, and Their Categorical Semantics,

https://doi.org/10.46298/lmcs-21(4:9)2025
https://doi.org/10.4230/LIPIcs.FSCD.2021.17
https://doi.org/10.4230/LIPIcs.FSCD.2023.13
https://inria.hal.science/hal-04406440
https://doi.org/10.48550/arXiv.2305.08489
https://fscd2021.dc.uba.ar
https://www.irif.fr/gt-scalp/journees-2021
https://easyconferences.eu/fscd2023
https://chocola.ens-lyon.fr/events/meeting-2023-09-28

5. Workshop GALOP.
Janvier 2024, London (Royaume-Uni). https://popl24.sigplan.org/home/galop-2024.
Exposé : Taylor Expansion is Game Semantics.
6. Journées Francophones des Langages Applicatifs (JFLA).
Janvier 2024, Saint-Jacut-de-la-Mer. https://jfla.inria.fr/jfla2024.html.
Exposé : Resource Categories from Differential Categories.

Poster

1. Journées Nationales du GDR IM.
Mars-Avril 2022, Lille. https://jnim2022.sciencesconf.org.
Poster : An Extensional Resource lambda-calculus and its Categorical Semantics.

Autres — Ecoles et conférences suivies

1. Rencontres mensuelles Chocola,
2021-2025, Lyon. https://chocola.ens-lyon. fr.
2. Mois thématique 2022 Logique et Interactions, Marseille :

» Ecole d’hiver de logique linéaire. https://conferences.cirm-math.fr/2685.html.
» Logique de la programmation probabiliste. https://conferences.cirm-math.fr/2686.html.
» Logique et structures supérieures. https://conferences.cirm-math.fr/2689.html.

3. Journées du GT Scalp,
Février 2023, Marseille. https://conferences.cirm-math.fr/2992.html.
Novembre 2023, Orléans. https://www.irif.fr/gt-scalp/journees-2023.
4. A-calcul différentiel et logique linéaire différentielle, 20 ans apres,
Mai 2024, Marseille. https://conferences.cirm-math.fr/2980.html.
5. Avancées en Sémantiques Interactives et Quantitatives,
Mai 2025, Marseille. https://conferences.cirm-math.fr/3518.html.

https://popl24.sigplan.org/home/galop-2024
https://jfla.inria.fr/jfla2024.html
https://jnim2022.sciencesconf.org
https://chocola.ens-lyon.fr
https://conferences.cirm-math.fr/2685.html
https://conferences.cirm-math.fr/2686.html
https://conferences.cirm-math.fr/2689.html
https://conferences.cirm-math.fr/2992.html
https://www.irif.fr/gt-scalp/journees-2023
https://conferences.cirm-math.fr/2980.html
https://conferences.cirm-math.fr/3518.html

Résumé et mots clés

Cette these présente les jeux concurrents a pointeurs, et étudie les liens entre la sémantique des jeux d'une
part et le A-calcul a ressources d’autre part.

On s’intéresse tout d’abord aux liens entre sémantique des jeux et modele relationnel. On commence par
introduire un nouveau modéle de jeux, les jeux concurrents a pointeurs (PCG). Ce modéle s'inspire a la fois des
jeux HO traditionnels et des jeux concurrents. On établit une bijection entre les augmentations (quotientées
par isomorphisme) dans PCG et les parties (quotientées par homotopie) des stratégies innocentes dans HO.
Ce modéle nous permet d’obtenir un premier résultat d’injectivité positionnelle dans PCG, qui se traduit
en un résultat d’injectivité positionnelle pour les stratégies innocentes, finies et totales dans HO. On montre
également que les stratégies innocentes partielles infinies ne sont pas positionnellement injectives.

On introduit ensuite le calcul a ressources extensionnel, c’est-a-dire typé de facon a ce que les termes en forme
normale soient également en forme n-longue. Ces termes sont en bijection avec les classes d’isomorphisme
d’augmentations dans PCG.

On peut maintenant s’intéresser a 1’aspect dynamique de la sémantique. On définit une opération de composition
dans PCG, et on montre que PCG est une catégorie symétrique monoidale fermée. La correspondance entre
PCG et HO s’étend en un foncteur cartésien fermé strict.

Pour étudier l'interprétation du calcul a ressources dans PCG, on cherche a exprimer plus précisément sa
structure catégorique. Pour cela, on introduit les catégories d ressources, inspirées des catégories différentielles.
On définit I'interprétation du calcul a ressources dans une catégorie a ressources, et on montre qu’elle est
compatible avec la f-réduction. PCG forme une catégorie a ressources, dans laquelle l'interprétation du
calcul a ressources coincide avec la bijection établie précédemment pour les termes en forme normale.

Mots clés: Sémantique dénotationnelle.

Sémantique des jeux — innocence, positions, jeux Hyland-Ong, jeux concurrents a pointeurs.
A-calcul — calcul a resources.

Sémantique catégorique — catégories a ressources.

Abstract and keywords

This thesis presents the Pointer Concurrent Games model. We study the links between game semantics and
resource A-calculus.

First, we focus on the links between game semantics and relational semantics. We introduce a new game
model, pointer concurrent games (or PCG), inspired by traditional HO games and by concurrent games. There is
a bijection bewteen augmentations (up to isomorphism) in PCG and plays (up to homotopy) of innocent strategies
in HO. We obtain a first result of positional injectivity in PCG, which translates to a result of positional
injectivity for total finite innocent strategies in HO. We also prove that partial infinite innocent strategies are not
positionaly injective.

Next we introduce the extensional resource calculus, i.e. a typed resource calculus where typing rules ensure
that terms in normal form are also in 1-long form. These terms are in bijection with the augmentations (up to
isomorphism) in PCG.

We can now consider the dynamic aspect of the semantics. We define the composition in PCG, and we show
that PCG is a closed symetric monoidal category. The correspondance between PCG and HO is extended to a
strict cartesian closed functor.

Finally, in order to study the interpretation of the resource calculus in PCG, we try and describe more precisely
its categorical structure by introducing resource categories — inspired by differential categories. We construct
a sound interpretation of the resource calculus in a resource category, and we show that PCG is indeed a
resource category. Moreover, this interpretation coincides with the bijection for normal resource terms.

Keywords: Denotational semantics.

Game semantics — innocence, positions, Hyland-Ong games, pointer concurrent games.
A-calculus — resource calculus.

Categorical semantics — resource categories.

Contents

Affidavit iii
Liste de publications et participation aux conférences iv
Résumé et mots clés vi
Abstract and keywords vii
Contents viii
INTRODUCTION 1
PRELIMINARIES 11
1 Reminders: Categories, A-calculus and Resource calculus 13
11 Categorical Preliminaries 13
111 Symmetric Monoidal Closed Categories 13

112 Stringdiagrams 14

11.3 Monoidsand Comonoids e e 15

1.2 Lambda-calculus e e 16
121 Termsof A-calculus e e 16

1.2.2 Freeandboundvariables 17

1.2.3 Substitution e 17

1.2.4 Reduction i e e e 18

125 Simpletypes 18

1.3 Resourcecalculus e 19
1.3.1 Preliminariesontuplesandbags, 19

1.3.2 Termsoftheresourcecalculus 19

1.3.3 Substitution e e 20

1.3.4 Resourcereduction e 20

1.3.5 Typingrules 21

2 Introduction to Hyland-Ong Games 23
21 Arenas e e e e 23
211 Definition. e e e e 23

2.1.2 Constructors ONarenas v v vt e e e e e e e e e e e e e e 25

22 Plays ... 26
221 Definition. e e 26

222 VIEWS . . o o o e e e e e e e e e 28

2.3 Strategies 30
231 Definition. e e e 30

232 INNOCENCE. o o e e e e e e e e e e 30

2.3.3 Other properties of strategies: totality and finiteness 31

24 Composition e 32
2.5 HOand HOM™ as categories oo v v v vt v i 33

2.6 Links with the resource calculus e 35

AN INTRODUCTION TO POINTER CONCURRENT GAMES

3 Static Pointer Concurrent Games: Configurations and Augmentations

31

3.2

3.3

3.4

3.5

3.6

37
3.8

Relational Collapse
311 Configurations oL
312 Positions
3.1.3 RelationalModel
Positional Injectivity
3.21 Positionality L oo
3.2.2 Positional Injectivity oL,
Augmentations L
3.31 Definitions L o oo
3.3.2 Isogmentations
3.3.3 Additional Conditions on Augmentations
Augmentations in PCG v. PlaysinHO
3.41 Homotopyrelation
3.4.2 From plays to isogmentations
3.4.3 Fromisogmentationstoplays
344 xisabijection oL
Meagre Innocent StrategiesinPCG
3.5.1 Meagre Innocent Augmentations and Isogmentations
3.5.2 From innocent strategiestomii’s
3.5.3 From mii’s to innocent strategies
3.54 Theisomorphism
Fat Innocent StrategiesinPCG
361 Expansions,
3.6.2 FatInnocent (Iso)expansions
3.6.3 The isomorphisms isog(—) and iexp o Mll(—) coincide
A few words on Infinite Strategies
Conclusion

4 Positional Injectivity, for PCG and for HO

41

4.2

4.3
44

4.5

Duplicating Opponent Moves
411 Proofidea 0.
412 Characteristic Expansions
Bisimulation Relations,
421 Bisimulations across an isomorphism
4.2.2 Bisimulations between non-isomorphic augmentations . . .
423 Clones
Total MIAs are Positionally Injectivein PCG
Positional Injectivity inHO
4.41 Total Finite Innocent Strategies are Positionally Injective in HO
442 Beyond Total Finite Strategies
Conclusion

ComPoOSITION AND RESOURCE CALCULUS SEMANTICS

5 Augmentations are Normal Resource Terms

51

Extensional simply-typed resource calculus.
511 Typingrules
512 Reduction and substitution

37

39
39
39
40
41
43
43
44
45
45
46
47
48
49
49
51
54
55
55
55
57
60
60
60
62
63
63
64

65
65
65
66
70
70
72
75
81
86
86
87
88

89

91
91
91
92

52

5.3

5.4

51.3 Normalisation e e

A few additional PCG constructions L 0 oL
521 Construction on arenas—HomGame
5.2.2 Constructions on configurations
Theisomorphism
531 Typesandcontexts
53.2 Resourcesequences e
53.3 Resourcebags
534 Currying
535 Headoccurrence. e
53.6 Theisomorphism
Conclusion

Composition and Categorical Structure

6.1

6.2

6.3

6.4

6.5

6.6

Composition for augmentations L oo Lo
6.1.1 Interaction via anisomorphism 0.
6.1.2 Composition via anisomorphism
6.1.3 Composing isogmentations. L o oL
Strategies and identities L L L
6.21 Strategies e
6.22 Identities
The categorical structure of PCG
6.3.1 Associativity of the composition L oo L Lo
6.3.2 Neutrality of copycat L
PCGisaSMCC
6.41 Tensor.
6.4.2 Structural morphisms —intuitively o 0 o L
6.43 Renamings e
6.4.4 Structural morphisms—formally
6.45 Closedstructure
From qualitative PCGto HO
6.51 Arrowing
6.5.2 Plays™(—)and innocent strategies L.
6.5.3 Identities
6.5.4 Composition
6.5.5 Functor between PCGandHO
Conclusion and perspectives

Resource Categories

7.1

7.2

7.3

Definition L
711 Additivity ...
712 Bialgebras. e
713 PointedIdentity
714 Resource Categories e
715 Closenesso
Properties of resource categories L L oo
721 Constructions
7.2.2 Bagsof pointed morphisms Lo L
7.2.3 Comonoid morphisms
Interpretation and Soundness L L Lo

731 Interpretation

93
94
94
94
95
96
96
97
97
98
100
102

103
103
103
108
112
113
113
114
116
116
120
124
124
127
127
131
134
135
135
136
137
139
144
145

7.3.2 Technicallemmas e

7.3.3 Substitutionlemma L
734 Soundness
7.4 How to build your own resource category
741 Additive monoidal storage categories
742 Theconstruction L L e
7.4.3 Whataboutcloseness?
7.5 Conclusion and perspectives o

8 PCG and Resource-calculus

81 PCGisaresourcecategory
8.1.1 Additivestructure e
812 Bialgebralaws
8.1.3 Proof of the bialgebra distributivitylaw
814 Compatibility
8.1.5 Pointedidentities e e e
8.1.6 Closed structure 0 e e e e
8.2 Compatibility withnormal forms,
8.3 Conclusion e e
CoNCLUSION
APPENDICES
Bibliography
Alphabetical Index
Nomenclature

173
173
173
173
175
179
179
181
182
183

185

189
191
194

196

Introduction

A brief outline. Game semantics is a formal model of the execution
of programs. It may be more correct to write “are formal models”, as
there are many different game models; this thesis focuses both on the
standard HO games and on a new model, Pointer Concurrent Games (or
PCG for short). We study correspondences between several ways of
approximating the behavior of programs, trying to better understand
how they are related; in particular we will describe some links between
PCG, HO, the relational model, and the resource calculus — as well as
expose the categorical structure of PCG.

What is (game) semantics anyway?

What is this thesis about? Despite the fact that “Mathematics” is
written on the title page of this document, it is at heart as much about
computer science as about mathematics — or rather, it is about the
mathematical structures of programs and computations. The semantics
of programming languages is the study of formal properties of the
executions of programs, by modeling executions with mathematical
objects in order to better understand their structure and properties.

Consider for instance the interaction between and their calculator
presented in Figure 1.

They are several ways to model this computation.

Operational semantics focuses on the operations performed during the
computation by giving formal rules on syntax, modeling for example the
step-by-step execution of a program.

For instance, we can represent natural numbers with:
n,meNat := 0 | Sn.

The line above is an inductive definition of the elements of Nat
(given in Backus—Naur form, or BNF for short). It means that the elements
of Nat are written n or m, and that they are either 0 or of the form Sn
where n is an element of Nat.

Here 0 represents the natural number 0, and S n is the successor of the
natural number 1 represented by n (i.e. S n represents n + 1).

For any n € N, we write n as a shortcut for S...S 0.
——

n times

Then n represents 0 +1 + ... + 1, i.e. the number 7.
N—

n times

Going back to our addition example, the calculator uses the rules pre-
sented in Figure 2 to perform the step-by-step computation of Figure 3.

What is game semantics? ... 1
Aboutcalculi 3
Bridging the gap between

models 3
Contributions 6
Outline 9

=

Figure 1: A simple example.

n+0 n
n+(Sm) = (Sn)+m

Figure 2: Formal rules for the addition
in Nat.

I
100 100 IN3 o |Gt
+ 4+ + +
@ 1= 1IN W

Figure 3: Step-by-step computation.

2 Introduction

Figure 4: Denotational point of view.

[37]: Scott (1993), ‘A Type-Theoretical Al-
ternative to ISWIM, CUCH, OWHY’
[36]: Plotkin (1977), ‘LCF Considered as
a Programming Language’

1: We use model as a synonym
for semantics, most of the time implicitely
denotational semantics.

[27]: Hyland and Ong (2000), ‘On Full
Abstraction for PCF: I, II, and III

[35]: Nickau (1994), ‘Hereditarily Sequen-
tial Functionals’

[1]: Abramsky, Jagadeesan, and
Malacaria (2000), ‘Full Abstraction for
PCF’

n="?

m= ?

n+m=38
Player

Figure 5: A play for “5+3 = 8”

Denotational semantics is the translation of a program M to a mathe-
matical object [M], its denotation. Here a program is seen as a function,
whose arguments are the inputs of the program.

For the addition example, we could write for instance:
[+]: NxN — N
(n,m) > n+m

and represent the computation 5+ 3 = 8 as in Figure 4.

This way of modelling execution has several advantages; it does not
depend as much on a specific syntax, and it allows us to study compositional
properties of programs (for instance, we might want [f (x)] = [f]([x]))-

Historical context. Game semantics is a denotational semantics that
arose in the early 90’s from the problem of “full abstraction for PCF”, i.e.
the question of whether all observationally equivalent programs in PCF
(Programming Computable Functions, a typed fonctional language — see
[37] or [36]) have equal denotations.

Some of the first fully abstract models! for PCF are game models:
HO/N games, or HO games, independently introduced in [27] and in [35];
and AJM games, introduced in [1]. Since then there have been lots of de-
veloppements in this line of work, and there are numerous other models
- involving non-determinism, concurrency, efc. — but in this thesis, we
focus only on HO games (with inspiration from concurrent games).

Intuitions on games. Game semantics models programs as processes,
focusing on the interactions between the program and its environment.
These interactions are represented as plays in a game between two
protagonists, one of them called Player representing the program and
the other called Opponent representing the environment.

In our example from Figure 1, Player would be the calculator E and
Opponent the . Their interaction could be represented by the
dialogue in Figure 5

Information tokens exchanged between Opponent and Player are called
moves. The “rules” of the game, i.e. which moves are available and when,
are given by an annotated tree structure called the arena — it corresponds
to the type of the program. An example of such a rule could be: when
Player asks n=?, Opponent can only respond with an integer value, like ,
because the type of the addition program hereis N x N — N.

A play represents one possible execution of a program; for instance Fig-
ure 5 represents one execution of the addition program, where Opponent
wants to compute 5 + 3.

Programs themselves are represented by strategies, which are sets of plays
corresponding to every possible execution of the program. The strategy
representing the addition program would include plays corresponding
to any computation of n+m for any n, m; as well as executions where
Opponent decides to stop the computation, or to repeat (part of) it.

About Calculi

A-calculus. Introduced by Church in the 30’s (see [14] for the historical
reference, or [2] for a more detailed introduction), the A-calculus is a
formal programming language, where programs are ferms of the form:

M,N,L,... = X (variable)
| Ax.M (abstraction)
| MN (application)

An abstraction Ax.M represents a function “x — M” —i.e. a program
which asks for some input x and then executes a subprogram M.

An application M N represents a function application “M(N)” —i.e. a
subprogram M called with the subprogram N as its input.

Given a program Ax.M and an input N, one step of the execution of the
program (Ax.M) N is to compute “M[N/x]”, the A-term written like
M but where each occurrence of x is substituted by a copy of N. This
operation is the f-reduction, written (Ax.M) N —p M[N/x].

(Axyxx) N —g yNN.

The abstraction always captures the largest
possible term, i.e. the term Ax.M N is to be read as Ax.(M N). The
application is left-associative, i.e. the term M N Listoberead as (M N) L.
Hence the term (Ax.y x x) Nis (Ax. ((yx) x)) N.

Resource calculus. The resource calculus, on the other hand, arose from
linear logic (introduced in [24]) and quantitative semantics ([25]). Unlike
the usual A-calculus, the resource calculus sees terms as resources which
can each be used exactly once. Hence, the substitution is not defined
with a single argument term N anymore, but rather with a multiset of
terms [Ny, ..., Ny], which will each replace exactly one occurence of x
in M — the exact bijection being chosen non-deterministically, via a sum
of resource terms corresponding to all possible substitutions.

(Ax.y[x][x]) [N1, No] —p y [N T[N + y [IN-] [V

This allows for a control of the number of copies of N, and for exam-
ple ensures that the reduction terminates. Replacing arguments with
multisets of terms in A-calculi first emerged with the A-calculus with
multiplicities [10], the term resource appearing a few years later in [11].

Bridging the gap between models

Motivation. Both game semantics and resource calculus have been
well-studied lines of work for years, and both of them consider (sets
of) finite executions of programs to represent programs with possibly
infinite behavior. It is only natural to try and formalize a correspondence
between the two of them.

We are also interested in the connections between games and the relational
model, another semantics of programming languages.

Introduction 3

[14]: Church (1940), ‘A Formulation of
the Simple Theory of Types’

[2]: Barendregt (1984), The lambda calculus
- its syntax and semantics

[24]: Girard (1987), ‘Linear logic’

[25]: Girard (1988), ‘Normal functors,
power series and A-calculus’

[10]: Boudol (1993), ‘“The lambda-calculus
with multiplicities’

[11]: Boudol, Curien, and Lavatelli (1999),
‘A semantics for lambda calculi with re-
sources’

4 Introduction

[25]: Girard (1988), ‘Normal functors,
power series and A-calculus’

[9]: Boudes (2009), ‘Thick Subtrees,
Games and Experiments’

Figure 6: One execution of .

Of course, there is a practical motivation for this work. The more we
know about how to go from one model to another, the easier it becomes
to translate well-known properties from one model to the other without
having to prove them from scratch. It allows us to choose which setting
to work in when trying to prove new results, in order to work with the
model that is best suited for the proof techniques we want to use.

But above all, understanding links between models gives us a better
understanding of the models themselves, and of the actual programs they
seek to represent. Each model showcases different particularities of the
computational behavior of programs, so if we gain a better understanding
of their similarities and of their divergences, we come closer to grasping
the “true” computational behavior of programs.

State of the art

Relational model. While game semantics focuses on the dynamic aspect
of programs and their composition, there exist more static models, such
as relational semantics (see [25] for one of its first (implicit) appearances).

In the relational model Rel;, types are sets and programs are relations
between those sets — more precisely, between finite multisets over the set
for the input type and subsets of the set for the output type.

Going back to the addition example, we might write:
[_+] ¢ Mr(N) X AMp(N) X N
where Jl (X) is the set of finite multisets over X. In particular, we have:

(I51,[31,8) € [+].
Remark that we recognize the moves n=5, and n+m=8 of Figure 5.

More generally, the elements of the relational model can be seen as
desequentialized plays (see [9]), i.e. plays where the chronological infor-
mation is forgotten. We call the operation from plays in HO to positions
in Rel, the relational collapse.

Surely this temporal information, once forgotten, is gone and cannot be
recovered? It is true in general if you just look at plays, but when one
looks at strategies things are a bit different.

Innocent strategies. Innocence is a key notion in game semantics: inno-
cent strategies are strategies whose behavior does not change if Opponent
duplicates moves, or chooses to perform some moves in a different order.
They correspond to A-terms, or programs, without mutable states.

Consider a mystery program ¥, of type N — N. We know
the execution from Figure 6 happened. Now, if ¥ is innocent*, then it
must always return res=1 no matter how many times Opponent plays
the move — because without mutable states, it has no way of storing
the information “this is the second time Opponent plays n=3"

* Of course, given that three crows make a murder, their innocence is unlikely.

In a way, innocent strategies already “forget” part of the temporal
information in a play, as they act only according to the current thread.
Hence it makes sense to focus on the connections between innocent
strategies in games and the relational model.

Positionality in asynchronous games. A strategy is positional if its
behavior only depends on the current position (the moves that have
been played so far, without chronological order), and not the sequence of
positions reached in the computation. In Mellies’ asynchronous games,
innocent strategies are positional [33, Theorem 2]. However, this corre-
spondence is made possible by the fact that events carry explicit copy
indices, that help distinguish duplications of the same move.

What about HO games? In HO games, collapsing strategies to Rel; gives
us a set of positions; but it is not clear if innocent strategies in HO are still
positional without the help of copy indices.

We can also consider the weaker property of positional injectivity: is an
innocent strategy characterized by its set of positions? Results on the
injectivity of the relational model for linear logic presented in [18] suggest
that some temporal information can be recovered from the structure;
and indeed Tsukada and Ong show an injective collapse from a category
of innocent strategies onto the relational model in [40]. However, their
interpretation of the base type a in Rel; is a countably infinite set X,
which allows them to label moves in each play in order to encode some
causal links in the interpretation — but then we lose the correspondence
between plays and points of the web in relational semantics.

Question 1: Can we obtain a similar result of positional injectivity
without this labeling, interpreting a with a singleton?

Resource terms and HO games. As stated previously, HO games and
resource terms both consider (sets of) finite executions of programs to
represent programs with possibly infinite behavior.

Tsukada and Ong showed in [40] that (f-normal, -long) resource terms
are in bijection with plays of HO games up to Melliés” homotopy equivalence.
This homotopy relation, defined in [33], equates plays quotiented by
Opponent’s scheduling, i.e. the order in which Opponent duplicates
moves or starts a new thread.

See the plays from Figure 7: Opponent can choose to play

first and second, or the reverse — and if O is innocent then

Player’s reaction to both of these moves does not depend on the order of

Opponent’s inputs. The second play is just the first one with the pairs of
moves (n=3, res=1) and (n=4, res=42) switched.

However, Tsukada and Ong’s correspondence is not direct, going through
their aforementioned relational collapse; moreover it does not detail the
dynamical aspect of the interpretation.

Question 2: Can we understand the correspondence between games
and normal resource terms in a more direct way?

Question 3: What about interpreting non normal resource terms?

Introduction 5

[33]: Mellies (2006), ‘Asynchronous
games 2: The true concurrency of inno-
cence’

[18]: de Carvalho (2016), “The Relational
Model Is Injective for Multiplicative Ex-
ponential Linear Logic’

[40]: Tsukada and Ong (2016), ‘Plays as
Resource Terms via Non-idempotent In-
tersection Types’

[33]: Mellies (2006), ‘Asynchronous
games 2: The true concurrency of inno-
cence’

res=1 and res=42

res=42 res=1

L L

Figure 7: Two homotopic plays.

6 Introduction

n="7?
7N
res=1 res=42

Figure 8: Augmentation from Figure 7.

[15]: Clairambault (2024), ‘Causal Inves-
tigations in Interactive Semantics’

[18]: de Carvalho (2016), ‘The Relational
Model Is Injective for Multiplicative Ex-
ponential Linear Logic’

[40]: Tsukada and Ong (2016), ‘Plays as
Resource Terms via Non-idempotent In-
tersection Types’

Contributions

Static Pointer Concurrent Games. PCG originated from the wish to
better understand the links between Rel; and HO. When working with
innocent strategies, we often look at plays quotiented by homotopy, because
Opponent’s scheduling is not relevant to the behavior of the strategy.
To focus on the “relevant” part of the chronological information, we
defined augmentations as the main object of PCG, rather than plays.
They correspond to plays quotiented by homotopy, and they encode only
causal links that informs us on the causal structure of the strategy.

The two plays from Figure 7 correspond to the same augmen-
tation, drawn in Figure 8.

This construction is inspired by the modern approach of concurrent games
— see [15] for a detailed presentation. Augmentations retain the causal
structure of the strategy, as well as pointers following the rules of the
arena — one can think of pointers as the links between bound variables
and abstractions in A-calculus. In Figure 8 for instance, there are pointers
from to n="?, and from ton="7.

Main results [Chapter 3]:

» A new, synthetic formulation of plays up to Mellies” homotopy,
which offers a nice framework to work with innocent strategies and
causal structures;

» The detailed correspondence between innocent strategies in HO
and sets of augmentations in PCG.

Positional injectivity. This framework allows us to answer Question 1
— or at least part of it. Using a proof technique inspired from [18], we
show that total finite innocent strategies are positionally injective. We also
show that in general, partial infinite innocent strategies are not positionally
injective, as we exhibit a counter-example. These results are both obtained
in PCG and then translated to HO games.

Main result [Chapter 4]:

» Total finite innocent strategies in HO games (and their counterparts
in PCG) are positionally injective.

Augmentations and normal resource terms. Since we wish to study
the links between the resource calculus and PCG, we start by looking at
augmentations and normal resource terms. The correspondence between
plays and terms featured in [40] relied on the relational collapse; we
show a more direct construction of augmentations from -normal 1-long
resource terms, answering Question 2.

Main result [Chapter 5]:

» Normal, 7-long resource terms are isomorphic to (some isomor-
phism classes of) augmentations.

Dynamics of PCG. Before answering Question 3, we need to extend our
game model with a composition — otherwise, PCG is barely a denotational
semantics at all! Suppose we want to compose an augmentation g on an
arena A + B with an augmentation p on B I C (if these notations make no
sense for now, think of the usual composition of functions g o f, with
f:A— Band g: B — Cfor A, B, C some sets). We study the interactions
between g and p occuring in B the shared arena component. Because
augmentations are not chronologically ordered, there can be several ways
to synchronize g and p so that they agree on what is happening in B.
Hence, the composition p © g is not a single augmentation, but a sum of
augmentations over every possible synchronizations. This is reminiscent
of the sum produced by the substitution in the resource calculus.

In HO games, strategies are sets of plays, and we know that augmentations
are related to plays. Hence it makes sense that strategies in PCG would
be some kind of objects representing “gathering several augmentations
together”. Unlike in HO however, strategies in PCG are not sets of aug-
mentations but rather sums with coefficients. This quantitative aspect
is important for future works: by taking coefficients into account in our
setting, we lay out the foundations to link PCG with other quantitative
models, for instance ones with probabilities. Moreover, resource terms are
obtained from usual A-terms via the Taylor expansion, an operation which
transforms a A-term into a sum of resource terms; we want coefficients
in PCG to be able to match those obtained via the Taylor expansion.

We now have a model with strategies and composition, which allows
us to study the categorical structure of PCG. Models of linear logic are
symmetric monoidal closed categories (or smcc’s for short), and the
resource calculus is inspired by linear logic; so we might expect PCG
to be at least a smcc if we are to find an interpretation of the resource
calculus in PCG - and indeed, we prove that it is a smcc.

Forgetting coefficients for a short time, we check that our correspondence
between innocent strategies in HO and (sets of) augmentations in PCG
is compatible with the composition — yielding a strict cartesian closed
functor between (the quantitative fragment of) PCG and HO.

Main results [Chapter 6]:

» A notion of composition taking into account coefficients and the
different ways to synchronize two augmentations;

» PCG is a category (with arenas as objects and strategies as mor-
phisms) with a closed symmetric monoidal structure;

» The correspondence between PCG and HO defined in Chapter 3 is
extended into a strict cartesian closed functor.

Categorical Structure and Resource Categories. In order to study
the interpretation of resource terms in PCG, we want to gain a better
understanding of its structure. We would like a categorical framework
enabling the characterization of morphisms behaving “linearly” in PCG,
to show that these morphisms are in bijection with resource terms.

A first candidate would be the symmetric monoidal closed structure,
but this is not enough to properly define which morphisms in PCG
correspond to resource terms.

Introduction

7

8 Introduction

[20]: Ehrhard and Regnier (2003), “The
differential lambda-calculus’

[22]: Ehrhard and Regnier (2008), ‘Uni-
formity and the Taylor expansion of or-
dinary lambda-terms’

[7]: Blute, Cockett, and Seely (2006), ‘Dif-
ferential categories’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

Normalisation
[Chap. 5]
resource
» NF(s) = 2 8]
term S
Interpretation
[Chap. 7 and 8] 5
’
[s] = ZIsill

[Chap. 8]

Figure 9: The interpretation behaves
nicely!

A second idea is to look as differential categories. Indeed, another extension
of A-calculus inspired by linear logic is the differential A-calculus, defined
in [20]. The name differential comes from the differentiation operation in
analysis. There, functions are approximated by their derivatives, obtained
through differentiation — the Taylor expansion of a function is the sum
of its derivatives. By analogy with analysis, the Taylor expansion of a
A-terms in the differential A-calculus is the sum of its approximants,
obtained thanks to a formal differential operator. In [22], the authors
present the resource calculus as a sub-language of differential calculus.

Differential categories were introduced in [7] as a categorical framework
for differential linear logic. Does that mean we need to look for a differen-
tial categorical structure in PCG? Actually, strategies in games do not have
a linear behavior in general — so this approach is doomed to failure.

Our solution was to define resource categories, a categorical structure
built using similar constructions to differential categories (as presented
in [8]). Resource categories allow both for “non-linear” morphisms in
general (which are needed if we want PCG to be a resource category) and
for the characterisation of some “linear” morphisms (which will be the
target of the interpretation of resource terms).

Main results [Chapter 7]:

» A new categorical framework, featuring a few equations expressing
the behavior of morphisms corresponding to resource terms;

» A sound interpretation for the resource calculus;

» The links between resource categories and the notion of coderelic-
tion in differential categories.

PCG and the resource calculus. We check that PCG is indeed a closed
resource category. We can finally answer Question 3: resource terms
in general can be interpreted in PCG, following the interpretation for
resource categories. We show that the interpretation is compatible with
the isomorphism from Chapter 5 in the case of normal resource terms.

Main results [Chapter 8]:

» PCGis a closed resource category;

» In particular, we obtain a sound interpretation of resource terms in
PCG;

» This interpretation is compatible with the isomorphism for normal
terms defined in Chapter 5 (see Figure 9).

Introduction 9

Outline of the thesis

PRELIMINARIES presents some useful mathematical notions:

Chapter 1 quickly summarizes some definitions on category theory
and calculi;
Chapter 2 gives a more detailed presentation of HO games.

AN INTRODUCTION TO PCG showcases the first steps of the PCG model:

Chapter 3 defines positions and augmentations, as well as the link
with standard HO games;
Chapter 4 presents our result on positional injectivity.

COMPOSITION AND RESOURCE CALCULUS SEMANTICS studies the dynamical
aspects of PCG as well as the links with resource calculus:

Chapter 5 presents the static bijection between PCG augmentations
and normal resource terms;

Chapter 6 defines the composition in PCG. We show that PCG is a
smcc, with a strict cartesian closed functor between PCG
and HO, compatible with the bijection from Chapter 3;

Chapter 7 introduces resource categories. We define the interpreta-
tion of resource terms and prove its soundness. We also
study the links with differential categories;

Chapter 8 proves that PCG is a resource category, giving us an
interpretation of resource calculus in PCG. It coincides
with the bijection of Chapter 5 for normal terms.

———

Chapter 5

Chapter 2 3

Figure 10: Chapter dependency diagram.
Dashed green arrows --» indicate chapters that might be useful; full red arrows — indicate chapters that are definitely needed.

PRELIMINARIES

12

In this part, we present several mathematical notions.

In Chapter 1, we give some categorical definitions and we introduce A-calculus
and resource calculus. This chapter is not intended to be a tutorial and is mostly
meant for clarifying notations and definitions.

In Chapter 2, we present the traditional Hyland Ong games. This chapter intends
to be pedagogical and to explain games semantics from the start.

Reminders: Categories,
A-calculus and Resource calculus

This chapter summarizes a few notions that are important for this body
of work. We expect the reader to be already somewhat familiar with
category theory and A-calculus, as this chapter is not meant to be a
complete introduction to these.

First, we remind some useful categorical notions in Section 1.1. Then
we state a few definitions and properties of A-calculus — first the usual
A-calculus in Section 1.2, then the resource A-calculus in Section 1.3.

1.1 Categorical Preliminaries

This section presents some categorical notions which are used throughout
this document: symmetric monoidal closed categories, string diagrams,
and (co)monoids. We direct the interested reader to [32] for an introduc-
tion to category theory.

1.1.1 Symmetric Monoidal Closed Categories

As mentionned in the introduction, we will be particularly interested in
smcc’s. A monoidal category is a category equipped with a fensor.

Definition 1.1 — Monoidal Category

A monoidal category is a category 6 equipped with:

» afunctor ®: € X € — €6 called the tensor;
» an object I € 6 called the unit;
» the following isomorphisms natural in A, B, C:

associator: aapc:(A®B)®@C > A®(B®C)
left-unitor: A I®A— A
right-unitor: pa:A®I — A

such that for any objects A, B, C, D, we have:
triangle identity: (da® Ap)oaarp =pa®idp

and the diagram of Figure 1.1 commutes.

(A2 B)®C)aD — —2®PCP | (AgB)e(CoD)
aa,c ®idp l l & A,B,C®D
(A®(B®C))® D A®(B®(C® D))

0(A,B®C,[N AA ® ap,c,p

A®(B®C)® D)

1.1 Categorical Preliminaries 13
1.2 Lambda-calculus 16

1.3 Resource calculus 19

[32]: Mac Lane (1971), Categories for the
Working Mathematician

Figure 1.1: Pentagon identity.

14 1 Reminders: Categories, A-calculus and Resource calculus

&A,B,C OA,B®C
(A®B)®C———A®B®C)———— B®(C)® A

UA,B®C

QaB,C,A

(B®A)®Ca4>8®(A®C)B—>B®(C®A)

Figure 1.2: Hexagon identity.

[31]: Mac Lane (1963), ‘Natural Associa-
tivity and Commutativity”

[32]: Mac Lane (1971), Categories for the
Working Mathematician

A= _

Figure 1.3: SMCC.

[28]: Joyal and Street (1991), ‘The geome-
try of tensor calculus, I’

[39]: Selinger (2010), ‘A Survey of Graph-
ical Languages for Monoidal Categories’

SOOR

Figure 1.4: Composition.

B,A,C ®04,c

If a monoidal category comes with a notion of commutativity of this
tensor, it is additionally symmetric.

Definition 1.2 - Symmetric Monoidal Category

A symmetric monoidal category (or smc for short) is a monoidal
category (€, ®, I) equipped with an isomorphism natural in A, B:

symmetry: 0AB:A®B > B®A
such that for any objects A, B, C, we have:

symmetry with unit:
symmetry with tensor:

Aaooar=pa
OB,A©0AB = idAgB

and the diagram of Figure 1.2 commutes.

In this chapter, all categories are assumed equipped with a symmetric
monoidal structure (using ® for the tensor and I for the unit), unless
stated otherwise.

For the sake of readability, we mostly treat associator and unitors as iden-
tities, as justified by Mac Lane’s coherence theorem (see [31, Theorem 5.2]
for the historical statement and [32, Chapter 7] for the more standard,
textbook version).

Finally, we define symmetric monoidal closed categories.
Definition 1.3 — Symmetric Monoidal Closed Category

A symmetric monoidal closed category (or smcc) isansmc (6, ®, I)
such that for all A, the functor _® A: 6 — 6 has a right adjoint
(as in Figure 1.3).

1.1.2 String diagrams

We use string diagrams, read from top to bottom, for a graphical represen-
tation of some categorical equations (see [28] for a historical introduction
and [39] for a survey of graphical languages).

Composition. Given two morphisms f: A — B and g: B — C, the
composition g o f: A — C is presented in Figure 1.4.

1.1 Categorical Preliminaries | 15

Tensor. The tensor of f: A — Band g: C — D is represented using two
wires side by side as in Figure 1.5.

Symmetry. The symmetry morphism is represented by crossing the wires
as in Figure 1.6.

We often omit the labels on wires if they are clear from the context; we
also omit I wires because we treat unitors as identities.

Exponential. The last section of Chapter 7 features differential categories,
equipped with the endofunctor !. Following [7], for any morphism
f:A — Bwerepresent! f: A — !B with a squared box around f, as
in Figure 1.7.

1.1.3 Monoids and Comonoids
Finally, the construction of resource categories (Chapter 7) will involve
commutative (co)monoids.
Definition 1.4 - Monoid
A monoid in an smc € is an object A equipped with:

multiplication:
unitor:

paA:A®A— A
na: 11— A

satisfying the following equations:

associativity of i
neutrality of n:

pao (pa®ida) = pa o (ida ® pa)
pao (na®ida) =ids = 14 o (ida ® na)

which are presented in the string diagrams of Figure 1.8.

Definition 1.5 — Commutative monoid

A monoid (A, pa, n4) is commutative if it satisfies:

commutativity: UAOCOAA=UA.

(a) Associativity of 1. (b) Neutrality of 7).

Figure 1.8: Monoid laws.

A C
os = (D ®
B D
Figure 1.5: Tensor.
A B
O'A/B = ><
B A

Figure 1.7: ! f.

[7]: Blute, Cockett, and Seely (2006), ‘Dif-
ferential categories’

16 1 Reminders: Categories, A-calculus and Resource calculus

(a) Associativity of 6. (b) Neutrality of ¢.

Figure 1.9: Comonoid laws.

Dually, we define (commutative) comonoids.
Definition 1.6 — Comonoid
A comonoid in an smc 6 is an object A equipped with:

co-multiplication: 04t A—>ARA
co-unitor: eatA—> I

satisfying the equations of Figure 1.9.

Definition 1.7 - Commutative comonoid
A comonoid (A, 64, €4) is commutative if it satisfies:

commutativity: 04,4004 =04.

1.2 Lambda-calculus

[2]: Barendregt (1984), The lambda calculus e briefly state a few definitions and properties of A-calculus; we direct
- its syntax and semantics the interested reader to [2] for a detailed introduction.

1.2.1 Terms of A-calculus

Terms represent programs — or proofs of propositions, following Curry-
Howard isomorphism.

Definition 1.8 — A-terms
Consider a (countable) set of variables x,y,z,... € V.
We define A-terms, written M, N, L, ... € A, with:

M,N,L,... = X (variable)
| Ax.M (abstraction)
| MN (application)

Intuitively, an abstraction “Ax.M” is to be understood as “x — M”,
i.e. “the program which asks for an argument x and then executes the
subprogram M”. A term of the form M N is an application, i.e. “the
subprogram M is called with the subprogram N as its argument”.

1.2.2 Free and bound variables

Consider a term M and a variable x occurring in M.

» If x appears in a subprogram of M starting with the abstraction
Ax, we say x is bound.

» Otherwise, if x is unbound, we say that x is a free variable in M,
noted x € FV(M).

The notion of free and bound variables is a key one: intuitively, the
name of bound variables should not matter. Consider for instance the
functions:

firx—x fry—y

then surely we want our calculus model to express that f; and f, have
the same behavior. These functions translate to the following A-terms:

My = Ax.x M, =Ay.y
so we would like an equivalence relation equating My and M.
Definition 1.9 — a-equivalence
The a-equivalence is the least congruence relation =, such that:
Ax.M =, Ay.M’

where M, M’ € A, x,y € ¥, and we ask

» y ¢ V(M) (we say y is a fresh variable),
» M’ is the A-term written like M where each occurrence of x
is replaced by y.

Unless specified otherwise, we consider terms up to a-equivalence.

1.2.3 Substitution

The dynamics of A-calculus relies on the notion of substitution: given a
term M using the argument x and another term N, one can substitute
every occurrence of x in M by a copy of N.

Definition 1.10 — Substitution

Consider two terms M, N € A and a variable x € 7.

The substitution M[N/x] is the A-term written like M but where
each free occurrence of x is replaced by N.

1.2 Lambda-calculus

Consider the term
M:=Ax.(xy).
It has two variables
V(M) ={x,y},
including one free variable

FV(M) ={y}.

Consider the terms
M=AyxyandN =z.
Then the substitution M[N/x] is
MIN/x]=Ay.zy.

17

18 1 Reminders: Categories, A-calculus and Resource calculus

Figure 1.10: f-reduction rules.
(x:A)eT I'x:ArM:B I'rM:A—B TFrN:A
'tx:A I'tAx.M:A—B 't MN:B

Figure 1.11: Typing rules (for simply typed A-calculus).

1.2.4 Reduction

The other fundamental rule of A-calculus is the f-reduction: given an
abstraction Ax.M and a term N, the operation “applying Ax.M to N” is
substituting every occurrence of x in M by a copy of N.

Definition 1.11 - -reduction
Consider Ax.M, N € A. Then we define the S-reduction with:
(Ax.M) N —p M[N/x]
and the relation is extended with the rules of Figure 1.10.

Consider (Ax.x x) (Ay.y). We

have the following f-reductions: The B-reduction gives us a notion of execution: one reduction represents

(Ax.x x) (Ay.y) one step of computation.
—p (Ayy) (Ay.y) o
g Ayy Additionnally, the f-reduction is confluent, ensuring the unicity of the

normal form (if it exists).
Proposition 1.12 — Confluence of f-reduction

For any A-terms M, Ny, Ny, if M —>% Niand M —% N,, then

B
there exists L such that N; —>E L and N> —>;,; L.

1.2.5 Simple types

Types in A-calculus act as programming types: they inform on the nature
of the program (or term). In this thesis, we only consider simple types.
Definition 1.13 — Simple types
Simple types are given by a base type « and the following grammar:
AB,...:=a|A—> B.

The type A — B represents “functions from A to B”.

Terms are typed following typing rules from Figure 1.11, where I' is a
typing context, i.e. a set of typed variables of the form x : A.

1.3 Resource calculus

We now present a few notions regarding resource calculus. The definitions
mostly follow the ones from [22], but we will be using a sligthly different
type system, which will be introduced in Chapter 5.

1.3.1 Preliminaries on tuples and bags

Tuples. If X is a set, we write X* for the set of finite lists, or tuples, of
elements of X, ranged over by 7, l_;, etc. We writed = (ay, ..., a,) to list
the elements of 4, of length |d| = n. The empty listis (), and concatenation
is simply juxtaposition, e.g., @b.

Multisets. We write . s (X) for the set of finite multisets of elements of
X, which we call bags, ranged over by a, b, etc. We write a = [a1, ..., a,]
for the bag induced by the list @ = (a3, ..., a,) of elements: we then say
d is an enumeration of 7 in this case. We write [] for the empty bag, and
use * for bag concatenation. We also write |a| for the size of a: |4| is the
length of any enumeration of a.

Partitions. We shall often need to partition bags, which requires some
care because of the possible duplications. For @ € J(X)and k € N, a
k-partitioning of 4, written p: @ < k, is a function

p {1, 0aly = {1,...,k}.

Given an enumeration {4y, . .., a) of 4, the associated k-partition is the
tuple(a [, 1,...,a [, k), where we set

alpi=laj|p(j)=ilforl<i<k

sothata =a [, 1%---*a [}, k. The obtained k-partition does depend on
the chosen enumeration of @ but, for any function f: Jl;(X)* — M with
values in a commutative monoid M (noted additively), the sum

> f@r,.., a0 E D) fatyl,...,at, k)

A<AA** A p: a<k

is independent from the enumeration. When indexing a sum with
4 <@ *- -+ i we thus mean to sum over all partitionings p: 4 <k, using
a; as a shorthand for @ [, i in each summand.

Sequences. We will also consider tuples of bags: we write §[X] for

M (X)*. We denote elements of S[X] as 4, b, etc. just like for plain tuples,
but we reserve the name sequence for such tuples of bags.

1.3.2 Terms of the resource calculus

The terms of the resource calculus, as presented in [22], are called resource
terms. They are just like ordinary A-terms, except that the argument in
an application is a bag of terms instead of just one term.

1.3 Resource calculus 19

[22]: Ehrhard and Regnier (2008), ‘Uni-
formity and the Taylor expansion of or-
dinary lambda-terms’

20 1 Reminders: Categories, A-calculus and Resource calculus

Definition 1.14 — Resource terms

Consider a (countable) set of variables x,y, z, ... € V. We define
resource terms, written s, ¢, u, ... € A, and resource bags, written
5,t,...€ A, with:

x| Ax.s|st

s,t,u,...:

t
ti, ... :=[s1,...,54].

Wl
=
|

7ty

Resource terms are also consid-
ered up to a-equivalence.

1.3.3 Substitution

The dynamics relies on a multilinear variant of substitution, that we will
call resource substitution: a redex (Ax.s) reduces to a formal finite
sum s(f/x) of terms, each summand being obtained by substituting each

occurrence of x in s with exactly one element of .
We use an extension of syn-
tactic constructs to finite sums of expres-

sions: for § = Sersi and T = S Definition 1.15 — Resource substitution

we set:
dof Resource substitution is defined inductively with:
Ax.S = Z/\x.si,
iel _
(517 3, Sl «F;, |f He=semei=l
iel jeJ y(t/x) =y ify#xandt =[]
STd:efZZsi £ 0 otherwise
iel jef

def

(Az.s){t/x) = Az.(s{t/x))
(s AXE/ % 3 0/ (@Ea/x))
Fay o

[s1,...,sal(E/x) = D7 [sa(Ei/x), ..., su(Ea/x)]

Fabyse sty
where z is chosen fresh in the abstraction case.
The actual protagonists of the calculus are thus sums of terms rather than
single terms. We will generally write L[X] for the set of finite formal

sums on set X — those may be considered as finite multisets, but we adopt
a distinct additive notation to avoid confusion with bags.

Resource substitution is in turn extended by linearity, setting
= def T
S(T/x) = >3 > sickj/x)
iel jeJ

with the same notations as above.

1.3.4 Resource reduction

The reduction of resource terms ~» C A X X[A] is defined inductively by
the rules of Figure 1.12 — simultaneously with the reduction of resource
bags ~» C Ax Z[A].Ttis extended to ~» C L[A]x Z[A] by setting S ~» S’
whenever S =t+Uand S’ =T+ U with t ~ T".

Unlike the reduction in the usual A-calculus, the reduction ~» is strongly
normalizing, i.e. there is no infinite sequence of redutions.

1.3 Resource calculus 21

s~ S s~ 8 s~ 8’ Fro T
(Ax.s) f ~» s(t/x) Ax.s ~> Ax.S’ st~ S't [s]*f~> [S']*F st~>sT

Figure 1.12: Rules of resource reduction.

(x:A)eT ILx:Ars:B 'ts:A—B Trt:A Trti:A ... Trt:A
Trx:A F'rAxs:A—B T'rst:B Tr[ty,..., th]: A

Figure 1.13: Typing rules for resource calculus.

Theorem 1.16 — (see [22, Theorem 9]) [22]: Ehrhard and Regnier (2008), ‘Uni-
formity and the Taylor expansion of or-

The reduction ~» on X[A] is confluent and strongly normalizing. dinary lambda-terms’

1.3.5 Typing rules

We use simple types as in Definition 1.13.
The usual typing rules are given in Figure 1.13.

We write A — B — C for A — (B — C).
When constructing a bijection between resource calculus and games, we
consider terms that are in normal form, and that are n-long.

Definition 1.17 — n-expansion

Consider a normal resource term s of type A1 — ... —> A, — a.

We say s is n-long if it has the shape:
Ax1... . Ax, . t

with t a (normal) term of type a, and each subterm of t is 17-long,
recursively.

In Chapter 5, we consider a modified version of the typing rules, con-
structed to ensure that normal terms are always 7-long. Nonetheless, we
give the rules of Figure 1.13 in order to describe the bijection between

resource calculus and HO games from [40]. [40]: Tsukada and Ong (2016), ‘Plays as
Resource Terms via Non-idempotent In-

tersection Types’

Introduction to Hyland-Ong
Games

In this chapter, we introduce HO games, which will be our starting point
for the question of positional injectivity in the next chapter.

If the reader is not familiar with game semantics, it might help to keep in
mind the following correspondences between games and programs:

Arenas — Types
(the rules of the game)
Plays — Executions
(one iteration of the game)
Strategies — Programs
(a set of several plays)
2.1 Arenas

Our first objects of interest in game semantics are arenas, representing
types — they set “the rules” of the game, i.e. they list all computational
events available to Player and Opponent given the type of the program
being computed.

2.1.1 Definition

An arena is a set of moves (the possible events) which are polarized
(indicating if the move is playable by Opponent or by Player) and partially
ordered (following causal dependencies of interactions). More formally:

Definition 2.1 — Arena

An arena is A = (|A|, <a, pol,) with:

» |A| is a countable set of moves,
» <aisa partial order over |A|,
» poly: |A| — {—, +} is a polarity function.

Moreover, these data must satisfy the following conditions:

finitary: for all a € |A|, [a]a = {a" € |A| | @’ <a a} is finite,
forestial: for all a;,ap <a a, either a; <p ap oray <p ay,
alternating: for all a1 —a ap, pola(a;) # pola(az).

where a; —a a; means a; <a a, with no move strictly in between.

Though our notations differ superficially, our arenas are similar to those
presented in [27]. As in concurrent games, we use + and — for polarities
instead of O and P: positive moves are due to Player / the program, and
negative moves to Opponent / the environment.

2.1
2.2
2.3
2.4
2.5
2.6

Arenas............ 23
Plays............. 26
Strategies 30
Composition 32
HOand HO™ 33
Links with the resource

calculus 35

We define the immediate

causality relation —a with:

Foralla,b € |A], a —p biff:

» a<ab,
» foranyc € |A|,ifa <pa c <a b,

thena=corb=c.

[27]: Hyland and Ong (2000), ‘On Full
Abstraction for PCF: I, IT, and IIT"

24 | 2 Introduction to Hyland-Ong Games

Figure 2.1: An arena A.

T+, \F+

Figure 2.2: Arena bool.

Figure 2.3: Arena nat.

+

q

Figure 2.4: A non negative (nor positive)

and non well-opened arena.

For any arena A and move a € |A|, we write a~ (respectively a*) as a
shortcut for “a s.t. pols(a) = =" (respectively pola(a) = +).

Thanks to finitarity, <a can be recovered from — 4, so we draw only the
immediate causality in graphical representations of arenas. Consider as
an example the arena A from Figure 2.1. We read this diagram in the
following way:

» |Al ={a,b,c,d},
» —p is represented by dashed lines, read from top to bottom,
» forall e € |A|, pola(e) is indicated by the superscript of e.

In most diagrams, we also use the convention
negative moves, and blue for Player / positive moves.

for Opponent /

We show in Figure 2.2 the representation of the data type bool as an arena:
Opponent initiates the execution with q, the initial query requesting the
value of a boolean. Player may respond with T* (true) or F* (false).

Another example is presented in Figure 2.3: given a program of type nat,
its possible interactions with its environment are:

» being called by the environment (q),
» reacting with its value (any n* with n € N).

We write | for the empty arena and o for the arena with exactly
one negative move

We define additional conditions on arenas:

Definition 2.2 — Well-opened arena
An arena A is well-opened if it has exactly one minimal move, i.e.:
min(A) = {a € |A| | a is minimal for <a}

is a singleton.

If A is well-opened, its only minimal move is the initial move,
written init(A).

Definition 2.3 — Negative (and positive) arenas

An arena A is negative if pol, (min(A)) = {-}.

Likewise, an arena A is positive if pol,(min(A)) = {+}.

All arenas presented so far were negative and well-opened. This is not a
requirement for arenas: Figure 2.4 for example shows an arena that is
neither negative nor well-opened.

However, arenas in HO games are usually negative, hence in the rest
of this chapter, all arenas are assumed to be negative, unless stated
otherwise.

Since this not the case for PCG arenas, we did not ask for negativity in
the definition of arenas, to allows us to use the same arena definition for
both game models.

2.1.2 Constructors on arenas

More elaborate types involve matching constructions: the product and
the arrow.

The product of two arenas simply places both arenas side by side.
Definition 2.4 — Product of arenas

Consider A; and A; two arenas. Their product A; ® A; is the arena
defined with:

Ar®Ar| = A1 +]Ag],
(i/ a) SA1®Az (Z/ b) < a SAi b/
polA]®A2((il a)) = po'A,' (a) .

It is immediate that A; ® A, also is an arena.

For any family (A;);ec; of arenas, this extends to [T;e; A; in the obvious
way. Any arena A decomposes (up to forest isomorphism) as A = [];c1 A;
for some family (A;);er of well-opened arenas.

We now define the arrow constructor: given two arenas A and B with B
well-opened, the arrow arena A = B is similar to the product, but we
invert polarities of moves from A and add a causal dependency from the
moves of A to the initial move of B.

Definition 2.5 — Arrow

Consider A1, A, two arenas with A, well-opened.

We define A; = A, with:

[A1] +|As],
i=janda<a b,

or (j,b) = (2,init(A2)),
—poly (a)ifi =1,
polp,(a) if i = 2.

AL = Ay =
(i/ a) SA]2A2 (]r b) <

Pola,=a,((i,0)) =

Again, it is clear that Ay = A; is a (well-opened) arena.

Figure 2.6 displays the arena A = bool = nat. Once Opponent initiates
the computation with ¢, two types of Player moves become available:
Player may react by giving directly an integer (1), or they can choose to
evaluate their argument (q*), which in turn allows Opponent to react
with a boolean (T~ or). Remark that we represent moves as the moves
from their arena component, without the tags coming from the disjoint
union. The moves of A are actually:

|Al =A{(1,q), , , /(2,0),(2,1),2,2),...},

but we often omit tags in graphical representations for readability.

For any arenas A, Band C, weread A= B = Cas A = (B = C). We can
now interpret any simple type, using o for the base type a and the arrow
constructor for higher-order types. For instance, Figure 2.7 displays the
arena (0 = 0) = 0 = o, matching the simple type (0 = @) = o = «

2.1 Arenas 25

For any two sets E1 and Ej,
their disjoint union is:

Ei+Exy={(i,e)|i=1,2and e € E;} .

In the HO games category, the
product A ® B is a cartesian product —
hence its name. However, we use the no-
tation A® B, instead of the usual notation
A X B, because this construction will be
shown to be a tensor in the (symmetric
monoidal) category of PCG.

/1N /N
oo N /o

2,7)* 2, F)*

\

(1,0 (1,1)* -

Figure 2.5: Arena nat ® bool.

Figure 2.6: Arena bool = nat.

Figure 2.7: Arena (0 = 0) = 0 = o.

26 | 2 Introduction to Hyland-Ong Games

n="?
m= ?
n+m=38

Player

Figure 5: A play for “5+3 = 8”

ac--c¢ a " b

Figure 2.9: A pointing string.

with atomic type a — where each move is placed under the atom of the
type it comes from.

Let us go back to our introductory example (Figure 5). The program
corresponding to the addition of two integers lives in the following
arena:

Figure 2.8: Arena nat = nat = nat.

Remark that this arena A = nat = nat = nat is isomorphic to the arena
A’ = (nat® nat) = nat; the only difference being the tags of moves, which

are not represented in Figure 2.8. For instance, the initial move
of A would become in A’
2.2 Plays

Next we define plays, corresponding to program executions: a play is a
particular iteration of the game, following the rules given by the arena.

2.2.1 Definition

In Hyland-Ong games, players are allowed to backtrack, and resume the
play from any earlier stage. This is made formal by the notion of pointing
strings, which are sequences of moves with optional pointers from moves
to earlier moves (representing causal dependencies).

Definition 2.6 — Pointing String

A pointing string over a set of moves X is a string s € X*, where
each move may additionally come equipped with a pointer to an
earlier move.

Figure 2.9 shows a pointing string over {a, b, ¢, d}, read from left to right.
Pointers are indicated by dashed lines:

» the first move a has no pointer,

» the second move c points to the first move a,

» the third move a has no pointer,

» the fourth move b points to the first move a.

For any pointing string s, we often write s = s1 ... s, where s; is the i-th
move of s, and pointers are left implicit. The length of s, denoted by |s], is
the number n of moves in s. We write ¢ for the pointing string of length 0.
For any s of length #, for any k < n, we define s[1: k] = s1 ... s, (where
we keep the pointers). We say s[1 : k] is a prefix of s, written s[1 : k] E s.

For instance, the prefixes of the pointing string s from Figure 2.9 are:

s[1:0] = g,

s[1:1] = a,

s[1:2] = a---¢

s[1:3] = a---c¢ a,
s1:4] = azlc a b

Executions of programs will be represented by pointing strings over the
arena moves, with additional conditions.

Definition 2.7 — Play

Consider an arena A. A play on A is a pointing string s = s1...5,
over A with the following properties:

rigid: if s; points to s;, then s; —a s;,
alternating: forany 1 < i < n, pola(si) # pola(si+1),
negative: if n > 1, then pola(s1) = —,
legal: foralll < i < n,s; € min(A) or s; has a pointer.

We write Plays(A) the set of plays on A.

Recall the arena A from Figure 2.1. Then the pointing string presented in
Figure 2.9 is actually a play on A.

Given a play s and k < |s|, we say that s[1 : k] is a positive prefix

(respectively a negative prefix), noted
s[1:k]C*s (respectively s[1: k] C™ s),

if polp(sk) = + (respectively pola(sk) = —). We extend this definition to

the empty play by stating that ¢ is a positive prefix of any play s. More

generally, a play s on an arena A is positive if it is empty or if its last move

is positive, i.e. pola(sjs|) = +. We write Plays™(A) for the set of positive

plays on A.

Definition 2.8 — Well-opened play
A play s € Plays(A) is well-opened if and only if it has exactly one

move minimal in A.

We write Plays, (A) for the set of well-opened plays on A.

Combining the two notations, we write Plays; (A) for the set of positive,
well-opened plays on A.

Going back to Figure 5 again, the execution “5 + 3 = 8” corresponds to
the (positive, well-opened) play s € Plays] (nat = nat = nat) presented
in Figure 2.10, where we use indices for q; and q to distinguish them!.

2.2 Plays | 27

Figure 2.1: An arena A.

n="?

m= ?

n+m=38
Player

Figure 5: A “play” for “5+3 = 8”

Figure 2.10: “5+3 = 8” as an actual play

1: Recall that these moves are actually
(1,q)and (2, (1, q)) - we simply write q
and qp, and drop the other tags, to avoid
an overdecorated diagram.

28 | 2 Introduction to Hyland-Ong Games

Figure 2.11: A play s in [M]Ho.

We are now able to write plays corresponding to the evaluation of
simply-typed lambda-terms. Consider for example the term:

M=Af""%Axf(fx) oftypeA=(a—>a)—>a—a.

We interpret A as an arena in Figure 2.7. Then Figure 2.11 shows a
play s € [M]no, where [M]no is the interpretation (which is yet to be
defined) of M as a strategy 0 C Plays™((0 = 0) = o = o). We shall
develop this interpretation in the following section; for now we focus on
understanding s. The diagram presented in Figure 2.11is to be read in the
following way: moves are sequentially ordered from top to bottom, and as
for arenas each move is placed under its corresponding type component,
with dashed lines for the justification pointers (matching immediate
causality). To help the unfamiliar reader, we wrote the corresponding s;’s,
horizontally aligned, to the right of the diagram. Figure 2.11 corresponds
to the following execution:

1. First, Opponent asks for something of type a — knowing M is of
type (@ = a) = @ — «. This corresponds to 51 =

2. The variable in head position at this step of the computation is f of
type a — a, so Player reacts with s, = q* (the initial move of the
subpart of the arena coming from a — «).

3. Opponent then wants to evaluate the argument of f (expecting a
subterm of type a).

4. Player reacts with another copy of the move corresponding to the
variable f (of type a — a).

5. Opponent asks for the argument of this second f.

6. Player responds with the move corresponding to x of type a.

Intuitively, negative moves correspond to A-abstractions / evaluating the
argument of an application, and positive moves correspond to variable
occurrences. The pointers indicate both the link between a variable and
the A-abstraction it came from, and the link between an evaluation of an
argument and the function waiting for this argument.

2.2.2 Views

We saw several examples of plays in the previous subsection. Some, like
the play (from Figure 2.9):

feature repetition and duplication of moves: s; and s3 both correspond
to the move a . In HO games, both players are allowed to evaluate again
part of the program they already evaluated; here for instance Opponent
starts the evaluation with a~, Player reacts with ¢*, and then Opponent
decides to start the evaluation again by playing 2~ a second time.

This means that Opponent is allowed to “open several threads” corre-
sponding to “several program phrases”. However, when interpreting
terms of the simply-typed A-calculus, we do not want Player to be able to
react differently to moves that are duplications of the same Opponent
move: simply-typed terms have no mutable references and thus no way

2.2 Plays | 29

of storing the information “this is the n-th time I'm being evaluated”.
This corresponds to the key notion of innocence: an innocent strategy only
uses the information from the “current program phrase” to decide their
next move. This “current program phrase” is captured by the P-view.

Definition 2.9 — P-view

For any arena A, we set a partial function " : Plays(A) — Plays(A)
with "s" defined inductively on s by:

Tsa” = a if a € min(A),
Tsa b*™ = Tsa 'b* if the pointer of bisin "s a™",
Tsats’b™7 = Tsat b if b points to a,

undefined otherwise. In the last two cases, b keeps its pointer in
the resulting play.

If defined, s is called the P-view of s.

By induction, the P-view of a play s is always a play itself if it exists:
all moves remaining in "s" are either minimal (by the first case of the
definition) or justified (by the last two cases of the definition). Whenever
constructing the P-view would involve “jumping over a pointer” and
forgetting it, "s" is undefined. For instance:

r A = ,

r - ot = rgo ot = .

r - C+ A = ,

Ta-z-c* _.b*7 undefined,
where the last P-view is undefined since "a~ —c* a~ 7 only keeps
s3 = a and the pointer of s, = b" is 57 = a~. We say that such a play is

non-P-visible.
Definition 2.10 — P-Visibility

Consider an arena A. A play s € Plays(A) is P-visible if and only if
for all prefixes t C s, the P-view "t 7 is defined.

Constructing a P-view (if it exists) is idempotent: for any s € Plays(A),
By legality of plays, we have:
» if s # ¢, s1 is initial;

» if1 <i<|s|isodd,s;isnegative.

For any s € Plays(A), we say s is a P-view if "s? = s — remark that by
construction, a P-view is always P-visible. The P-views of A are exactly
the plays s € Plays(A) such that:

» forany odd 1 < i < |s|, s; points to s;_1.

30 | 2 Introduction to Hyland-Ong Games

2.3 Strategies

If plays are particular executions of a program, then a program as a
whole is represented by a strategy, a set of plays corresponding to every
possible execution of that program.

2.3.1 Definition

This set of plays must follow some conditions: in a deterministic setting,
Lo Player should always react in the same way to a given play, for instance.

- 92 -- 8 Consider the “addition” program: Figure 2.10 shows a possible play in
the strategy corresponding to this program. But Opponent might want to
Figure 2.10: “5 + 3 = 8” —as a play compute other sums than just “5 + 3” — our strategy should also include,

amongst (many) others, the following plays:

What about duplications? Opponent is also allowed to duplicate some
moves, or to stop the computation at any point. Thus our strategy will
also include plays such as:

In the general case, all we ask of strategies is that they be deterministic
and closed under taking prefixes.

Definition 2.11 — Strategy
A strategy 0: Aon an arena A is a set 0 C Plays™(A), satisfying:
non-empty: €€ o0,

prefix-closed: Vs e o, if tC*s, thent e,
deterministic: Vs € o, if sab, sab’ € o, then sab = sab’.

Implicit in the last clause is that
sab and sab’ also have the same pointers.

We say that a strategy o: A is P-visible if all plays s € ¢ are P-visible.

2.3.2 Innocence

Innocence captures the fact that some strategies only react to the “current
program phrase” and not the whole history of moves. In other words,
the behavior of Player entirely depends on the current P-view.

Definition 2.12 — Innocence
A strategy o: A is innocent if it is P-visible and satisfies:
for all sab, t € o, if ta € Plays(A) and "sa' = "ta’, then tab € o,

where "sab' = "tab' (informally, b points “as in sab” in tab).

An innocent strategy o: A is determined by its P-view forest:
ToTm={"s"|s€ea}.

Hence, we actually have two characterizations of innocent strategies:
the “fat” innocent strategy is the set of plays of the strategy o, and the

“meagre” innocent strategy is just the set of P-views "o ™.

Since P-views are well-opened, we might also characterize any innocent
strategy o: A by the subset of its well-opened plays:

0e = 0 N Plays,(A).

2.3.3 Other properties of strategies: totality and finiteness

We might want our strategy to react to every possible action of Opponent
—that would be a total strategy; or we might allow it to diverge sometimes
- giving us a partial strategy.

Definition 2.13 — Total strategy

Consider a strategy o: A. We say o is total if for all s € o, for
all a~ € A such that sa € Plays(A), there exists b* € A such that
sab € 0. Otherwise, we say that ¢ is partial.

Finally, innocent strategies are “infinite” in the sense that given an
innocent strategy ¢ and a play s € o, any play of the form s"” =s...s
with n copies of s also belongs in o by innocence — so ¢ admits an infinite
number of plays. However, since innocent strategies are characterized by
their P-views, we can distinguish between strategies having a finite set of
P-views, and strategies having an infinite set of P-views.

Definition 2.14 — Finite innocent strategy

Consider an innocent strategy o: A. We say o is finite if its P-view
forest ™ o™ is finite. Otherwise, we say that o is infinite.

Total finite innocent strategies are already well-known in the litterature.
For example, on arenas interpreting simple types with a single atomic
type a, total finite innocent strategies exactly correspond to f-normal
n-long simply-typed A-terms [17, Theorem 5].

2.3 Strategies | 31

The P-views forest of an in-
nocent strategy o is:

ToT = (s €q).

[17]: Danos, Herbelin, and Regnier (1996),
‘Game semantics and abstract machines’

This result only holds for arenas
with one atomic type.

32 | 2 Introduction to Hyland-Ong Games

/0 /1 /0
/0 7 [

o 1+ O @

/

T+ F+

Figure 2.12: Arenas A := bool, B := bit
and C := mood.

2.4 Composition

As a denotational model, HO games include a notion of composition: how
do two programs interact with each other?

Given strategies 0: A = B and 7: B = C, we wish to somehow define
a strategy 7 o"% g: A = C. Hence, we must construct a set of plays
corresponding to possible executions of the program “t "0 ¢”.

Intuitively, the composition works in two steps:

» First, we choose two plays s € 0 and t € T such that s and ¢ “agree
on the moves played in B”, following an interaction.

» Then, the interaction of these plays induces a play on A = C,
keeping only the moves from the outer arena components and
adding pointers and sequential order “following those of s and ¢”.
We say we hide moves occurring in the shared arena component B.

The strategy T ©"0 ¢ is the set of all the possible compositions of plays.

More formally, we start by defining interactions.
Definition 2.15 — Interaction

Consider arenas A, B and C, and a pointing string # on |A| +|B| +|C|.
We note u | A, B the subsequence of u of the moves played in A and
B, seen as a pointing string on A = B, and preserving pointers —
and likewise foru [B,Cand u [A,C.

Then u is an interaction, noted u € I(A, B, C), if:

» u [A,B e Plays(A = B),
» u ['B,C € Plays(B = C),
» u ' A, Cis alternating.

Remark that this definition ensures that for any u € I(A, B, C), we have
u ' A,C € Plays(A = C). Consider for example the (very simple) arenas
in Figure 2.12. Then the pointing string

ac- @@ T 1

S

is an interaction — notice how there is no indication of polarities — because
its restrictions are all plays in the corresponding arenas:

ulAB = i:qj\—— Tt € Plays(A = B),
Ul B,C = “Tq;-- 1 @ ePlays(B=0),
ulA,C = ::/qj\—— O ePlays(A = Q).

Already we see some kind of compositional behavior: u [A, C is the
result of hiding the moves occuring in B when we “compose” the two
playsu ' A,Band u [B,C.

2.5 HO and HO'™ as categories | 33

We extend the definition of interaction to strategies:
Definition 2.16 — Interaction of strategies

Consider arenas A, Band C, witho: A= Band t: B = C.

We define the interaction of ¢ and 7 as:

7)lo € {u€I(A,B,C)|ulABecandu | B,Ce1}.

The composition is then obtained by hiding the moves occuring in the
shared arena component.

Definition 2.17 — Composition of strategies

Consider arenas A,Band C, withc: A= Band 7: B= C.

We define the composition of ¢ and 7 as:

T@Hood:d{u 'A,C|uerl|lo}.

Now, obviously we want the composition of two strategies to also be a
strategy (see [27, Proposition 5.1] or [26, Proposition 2.5.3]).

Proposition 2.18 — Composition is well defined

Consider arenas A, Band C, witho: A= Band t: B= C.

Then 7 ©"° ¢ is a strategy on A = C.

Moreover, the composition of two innocent strategies is itself an innocent
strategy (see [27, Proposition 5.3] or [26, Proposition 2.6.3]).

Proposition 2.19 — Composition preserves innocence
Consider arenas A, B and C, with innocent strategies 0: A = B and

7: B = C.

Then 7 ©"° ¢ is an innocent strategy on A = C.

2.5 HO and HO'"™ as categories

Since composition behaves nicely both for strategies in general and for
innocent strategies, it is natural to consider the categorical structure of
arenas and strategies. We do not aim to give a detailed review on this
subject here; we only state some results so as to better understand how
the categorical structure of PCG — the model we focus on in this work —
relates to HO and HO™.

Theorem 2.20 — HO is a category

There is a category of strategies HO with arenas as objects and
strategies as morphisms.

[27]: Hyland and Ong (2000), ‘On Full
Abstraction for PCF: I, IT, and III"

[26]: Harmer (2006), Innocent game seman-
tics

Again, we direct the reader to [27] or [26]
for detailed statements.

34 | 2 Introduction to Hyland-Ong Games

We write Ay = A, forA = A
to distinguish between the two copies of
the arena A.

Theorem 2.21 - HO'™ is a category

There is a category of innocent strategies HO"™ with arenas as objects
and innocent strategies as morphisms.

Identity morphisms are called copycat strategies — they “copy” the
behavior of Opponent, hence their name.

Definition 2.22 — Copycat strategy
Consider an arena A.
We define CCEO: A; = A, the copycat strategy on A with:

forany s € Plays(A; = A,), s € cciiC iff

1. VtCrs,t Ay =t A,
2. if s7 and s}, minimal in A, then s} . points to s},
i i+1 i+1 i

Cartesian structure. Both HO and HO'™ can be equiped with a cartesian
structure, thanks to the product of arenas (Definition 2.4).

The projection 715°: A® B = A is the copycat-like strategy where Player
duplicates every Opponent move played in one copy of A to the same
move in the other copy of A (note that Opponent cannot change the arena
component, so all moves stays in the two copies of A and no move is
played in B). The projection ngo is defined in the same way.

Closed structure. Finally, recall the remark made about product and
arrow constructions: it is immediate to check that for any arenas A, B and
C, there is an isomorphism:

A (A®B)=C = A=B=C;

the only difference between the two construction being tags of moves.
Applying AH to plays in strategies gives us the currying isomorphism:

A HOA®B,C) = HO(A,B=C),
which in turn gives us the evaluation morphism:
ed L (A")7 (cciO,) € HO((A=B)®A,B).

These morphisms verify all the equations for a cartesian closed category.
Moreover, AHC preserves innocence.

Theorem 2.23 — HO and HO'™ are CCC’s

HO and HO'™ are cartesian closed categories.

2.6 Links with the resource calculus 35

(0= 0) = (0=0) =0 = o0 ((0=>0) = (0 =>0) =0 = o0
+ - + -7
,—"—::q // ,,—"__q /l
- - / , - L0 /
~ ,’/ // / - // // //
- - 1 - - ,
q+ ///’/ /// // q+ /// / //
PR / / /// /
q+ // II’ /// q+
!
! -
q* q

Figure 2.13: Two homotopic plays.

2.6 Links with the resource calculus

As mentionned in the introduction, the links between HO games and

resource plays have already been investigated, for instance in [40]. [40]: Tsukada and Ong (2016), ‘Plays as

) Resource Terms via Non-idempotent In-
These links rely on Melliés’ homotopy relation, introduced in [33]. We tersection Types’

will define this homotopy relation more formally in the next chapter. [33]: Mellies (2006), ‘“Asynchronous
Intuitively, it equates plays which only differ by Opponent’s scheduling, = games 2: The true concurrency of inno-

as the two plays of Figure 2.13.

cence’

Theorem 2.24 — HO and the resource calculus [40]

There is a bijection between simply typed, f-normal, 77-long resource
terms, and HO plays up to homotopy.

Consider the (simply typed, f-normal, 11-long) resource term:
FAf f [Axx, Axx] [Ay.f[I[]: (@ 5 a) > (a > a) 2 a) > «a

Both plays of Figure 2.13 correspond to that resource term. In the first
play, the first argument of the first call to f is evaluated twice, and then the
second one is evaluated once; and none of the arguments to the second
call to f is evaluated. The second play features the same moves, only in a
different order.

AN INTRODUCTION TO POINTER
CoNCURRENT GAMES

38

[4]: Blondeau-Patissier and Clairambault
(2021), ‘Positional Injectivity for Innocent
Strategies’

In this part, we introduce our Pointer Concurrent Games model. This model
was motivated by the study of positional properties of innocent strategies in
Hyland-Ong games: is the collapse of innocent strategies into the relation model
injective? This question led us to design Pointer Concurrent Games.

In Chapter 3, we introduce the question of positional injectivity and we define
configurations and augmentations, our main mathematical objects. We show
how this games model relates to traditional Hyland-Ong games.

In Chapter 4, we present a first result obtained thanks to this games model:
positional injectivity for certain total augmentations in PCG, corresponding
to a result of positional injectivity for total innocent strategies in HO.
This chapter is more technical and is not needed to follow other parts.

Most of these results were presented in the article [4].

Static PCG: Configurations and

.
Augmentations
Before thoroughly defining pointer concurent games, we motivate our ~ 3-1 Relational Collapse ... 39
games model with a study of positionality / positional injectivity of innocent ~ 3.2 Positional Injectivity . . . 43
strategies. Indeed, at the core of pointer concurrent games are positions, 3.3 Augmentations 45
which are moves and pointers without the sequential information given 3.4 Augmentations in PCG v.
in a play. A desequentialized play induces a position, corresponding to PlaysinHO 48
its collapse in the relational model. But how much information about 3.5 Meagre Innocent Strate-
the play is preserved? Obviously, one cannot recover a play from any giesinPCG......... 55
position. Consider for example the arena bool and the following plays: 3.6 Fat Innocent Strategies . 60
3.7 A few words on Infinite
s=q-T q-F and t=q-F q-T. Strategies 63
3.8 Conclusion 64

The only difference between s and t is the temporal order in which the
pairs g — T and q — F occur, so once we forget that temporal order, we have
no way of distinguishing them. But still, maybe positions of the plays N
of an innocent strategy can inform us on the strategy itself. This is what
we investigate in this part. We start by defining positions and stating
the problem of positional injectivity for HO games; then we introduce
augmentations and we show how they relate to plays in HO games.

T+, \|:+

Figure 3.1: Arena bool

3.1 Relational Collapse

3.1.1 Configurations

We first define configurations, the actual mathematical objects we will be

working with. (|x|, <x) is a finite forest if

it is a finite partially ordered set such
that (|x|, —y) is a forest, with —, the
Definition 3.1 — Configuration immediate causality relation defined by:
Va,b € |x|,a — b iff:
A configuration x € Conf(A) of arena A is x = (|x|, <, dy) such 1 a<yb,
that (|x|, <) is a finite forest and Jy is a function dy: |x| — |A| 2. Veelx|,ifa<yc<yb,
called the display map, subject to the conditions: thena =corb =c.

minimality-respecting: for any a € |x|,
a is <y-minimal iff dy(a) is <p-minimal,
causality-preserving: for all ay,a; € |x]|,

. c a
if a1 — as then dy(ay) —a dx(a2),

a

i b—T
b cH

We call events the elements of | x|. A (simple) configuration y is presented

in Figure 3.2: its events are |y| = {a,b, c}, ordered with a <, b, and Figure 3.2: y € Conf(bool)

the display map d, is given alongside the forest (drawn from top to

bottom).

am—

A configuration x on an arena A is pointed, noted x € Conf.(A), if b T
'_)

it has exactly one minimal event for <, (written init(x)). The example
configuration y from Figure 3.2 is not pointed (because 4 and c are both
minimal for <,), but z from Figure 3.3 is.

S ---2

Figure 3.3: z € Conf,(bool)

40 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Thanks to the display map, a polarity function on x can be deduced:
poly(a) = pola(dx(a)).

As with HO games, we write a~ (resp. a*) for a such that pol,(a) = -
(resp. pol,(a) = +).

Any play induces a configuration via its desequentialization.

Definition 3.2 — Desequentialization

1 3 1,3+
L 215 T Consider an arena A and a play s = s1...5, € Plays(A). The
é 21 Ao F desequentialization of s is (s) = (| (s)|, <¢s), d¢s)) such that:
Figure 3.4: (s) withs =q—-T q—-F [= {1,...,n},
i<(¢)j ¢ thereisa chain of pointers from s; to s; in s,
1 3 13- I(i) = si.
i i 2> F
2 4 4T Figure 3.4 and Figure 3.5 present the desequentializations of the plays
introduced at the beginning of this chapter.
Figure 3.5: (t) witht =q—-F q-T

If s € Plays(A), then the definition of (—) ensures that (s) € Conf(A).
Moreover, since <) follows the chains of pointers, it is clear that

(s) € Conf.(A) & s is well-opened.

3.1.2 Positions

As elements of (s) are natural numbers reminiscent of the ordering,
s can evidently be read back from (s)). However, in general, the exact
name of events is not relevant: what we are really interested in is the
display of those events in the arena, as well as their dependencies. Hence,
we consider symmetries on configurations, which preserve the order
relation and the display map; and we then quotient configurations by
those symmetries.

Definition 3.3 — Symmetry

Consider x, y € Conf(A). Asymmetry ¢ : x =, y is anisomorphism
@: |x| = |y| preserving the order relation and the display map:

arena-preserving: Va € |x|, d,(¢(a)) = dx(a),
causality-respecting: Vay,az € |x|, ay —x az iff p(ar) —, ¢(az).

Consider again (s) in Figure 3.4 and (t) in Figure 3.5; then

@: () Zpoal () withp={1—3,2—4,3—1,4+—2}.

Definition 3.4 — Position

A position of A, written x € Pos(A), is an isomorphism class of
configurations on A.

A position x is pointed, written x € Pos,(A), if any of its representatives

is. If x € Conf(A), we write X € Pos(A) for the corresponding position.

Reciprocally, if x € Pos(A), we fix x € Conf(A) a representative.

For any play s € Plays,(A), its position (s) € Pos(A) is the isomorphism
class of (s)). The position of a play captures exactly the moves that have
been played, along with their justification pointers; it is a snapshot of
every interaction that occured between Opponent and Player at a given
point, but without the order in which those interactions occurred. To
represent positions graphically, one can draw forests of moves, where
the nodes are the arena image of events (instead of their names as with
configurations). For example, Figure 3.6 shows the position reached by
boths =q—-Tq—-Fandt = q—Fq—T (notice that the minimal nodes
are incomparable).

For any strategy o : A, we define its positions (o)) as the set of positions
reached by well-opened plays, i.e.

(o) ={(s) | s € 0} C Pos(A).

3.1.3 Relational Model

Positions of plays correspond to their collapse in the relational model

[19], a static semantics where types are sets and programs are relations.

More precisely, the relational model of the simply-typed A-calculus is a
cartesian closed category Rel;, with

objects: sets,
morphisms from E to F: relations R C JMs(E) X F.

Consider simple types generated from the base type a and the arrow —.

We interpret them as:

{*},
M ([A]Rel,) X [B]Re, ,

[a]Rel
[A — BJpel,

where {x} is a singleton set. For example, the following relation

R = {([*], %), ([*, %], %)}
is a subset of [— a]gre;, (Where multisets are noted with [| brackets).

Where does this relate to positions? First, we need to define thick subtrees
(and subforests), a notion introduced by Boudes in [9]. Thick subtrees are
rooted subtrees of a tree where some branches can be duplicated.

Definition 3.5 — Tree morphism
Consider two trees T and T’. A tree morphism f: T — T’ is a

function from the nodes of T to the nodes of T” which preserves
the root of the tree and such that if a —1 b, then f(a) —1/ f(b).

This definition can be extended to forests: forest morphisms preserve the
roots of the forest as well as the immediate order, as in Figure 3.7.

3.1 Relational Collapse | 41

mnm---

T

Figure 3.6: (s) = (t)

0e = 0 N Plays,(A), with
Plays,(A) the well-opened plays on A.
We focus on well-opened plays,
i.e. plays with only one initial moves,
because those plays are the ones corre-
sponding to points in Rel.

[19]: Ehrhard (2012), “The Scott model of
linear logic is the extensional collapse of
its relational model’

M ¢ (E) is the set of finite mul-
tisets on E.

[9]: Boudes (2009), ‘Thick Subtrees,
Games and Experiments’

F: a d FF:1 3 4
/\ |
b ¢ 2
a1, b—2,
f:{0|—>2, d|—>4}

Figure 3.7: A forest morphism f: F — F’

42 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

[9]: Boudes (2009), ‘Thick Subtrees,
Games and Experiments’

Figure 3.8: Arena [@ — a]inn

q q q

Figure 3.9: R as a thick subtree

[9]: Boudes (2009), ‘Thick Subtrees,
Games and Experiments’

[33]: Mellies (2006), ‘Asynchronous
games 2: The true concurrency of inno-
cence’

[13]: Castellan, Clairambault, Paquet, and
Winskel (2018), “The concurrent game
semantics of Probabilistic PCF’

[16]: Clairambault and Visme (2020),
“Full abstraction for the quantum lambda-
calculus’

Definition 3.6 — Thick subtree

Consider a tree T. A thick subtree of T is (T”, f) with T’ a tree and
f:T" — T atree morphism.

This definition allows duplications of branches of the original tree, but
ensures that no move can be copied without its predecessors.

Again, the definition can be generalized to forests — e.g. in Figure 3.7,
(F’, f) is a thick subforest of F. For the sake of simplicity, we shall use
“thick subtrees” for both thick subtrees and thick subforests.

Boudes [9, Proposition 2] showed that points of the web in relational
semantics match thick subtrees (up to isomorphism) of arenas.

Consider a well-opened arena A, then (|A|, —4) is a tree. It is clear that
configurations and positions of A match Boudes’ thick subtrees: they
represent partial explorations of A, where moves can be duplicated and
must be justified by their ancestors. Moreover, consider two arenas A and
B with B well-opened. There is a bijection:

Pos(A = B) = .l f(Pos(A)) X Pos(B)

which matches exactly the definition of morphisms in Rel;.

For any simple type A, considering its interpretation as an arena [A]nn,
there is a bijection

Ra: Pos([A]inn) = [AlRel, -

Recall for example the relation:
R = {([*]/ *)/ ([*/ *]/ *)} c [[a - aHRelg .

It is easy to see it as a thick subtree of [@ — a]inn as in Figure 3.9, where
the elements in a multiset in the left-hand side of a pair are Player moves,
and the elements in the right-hand side of a pair are Opponent moves.

Actually, this extends to a functor R4((—))): Inn — Rel, which preserves
the interpretation: for any simply-typed A-term M: A,

RA('[[MHInnI]) = [[MHReI! .

This relational collapse of innocent strategies is well-known. The inclusion
C is easy; the difficulty in proving 2 is that game-semantic interaction
is temporal: positions arising relationally might, in principle, fail to
appear game-semantically because reproducing them yields a deadlock.
For innocent strategies this does not happen: this was proved for HO
polarized games [9, Theorem 7], asynchronous games [33, Proposition 4],
probabilistic thin concurrent games [13, Lemma 3.12] or even quantum
games [16, Theorem 5.7].

3.2 Positional Injectivity | 43

3.2 Positional Injectivity

3.2.1 Positionality

Before focusing on positional injectivity, we take a look at the stronger
property of positionality. A strategy is positional if its behavior only
depends of the current position, not the current play.

Definition 3.7 — Positionality
Consider o : A a strategy on A. We set the condition:

positional: Vsab,t € ¢, ta’ € Plays(A),
(sa) = (ta’) = 3ta’b € o, (sab) = (ta’b).

Thls isa rather strong re.qulrement, which has also already been studied [331: Melliés (2006, ‘Asynchronous
in the litterature. In Mellies’ asynchronous games [33] for example, events games 2: The true concurrency of inno-
carry explicit copy indices that help distinguish duplications of the same cence’

moves, so innocent strategies are positional [33, Theorem 2].

But what about innocent strategies for HO games? It is quite immediate to
find counter-examples to positionality. Consider for example the term:

M=A o207 Ax® Ay f(fxx)(fyy)

whose interpretation [M]nn is the innocent strategy with four maximal
P-views given in Figure 3.10.

(ad —a—a)—a—a—a (@ —a—a)—a—a—u

’ — - ,

(a) The play sab corresponding to the evaluation:

AfAxAyf (fxx) (fyy).

(a—a—a)—a—a—a

(c) The play tac corresponding to the evaluation:

Af./\x./\y.i(fxx)(igy).

Figure 3.10: The four P-views of the meagre interpretation of M.

(b) The play sa’b corresponding to the evaluation:
Af - Ax Ay f(fxx) (fyy).

(@a—a—a)—a—a—a

(d) The play ta’c corresponding to the evaluation:

/\f./\x.)ty.]:(fxx)(iyg).

44 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Then in particular both prefixes sa’ (Subfigure 3.10b) and ta (Subfig-
(a—a—-a)ma—a—a ure 3.10c) reach the same position (Figure 3.11), but by determinism ta
cannot be extended with b into a play of [M]nn.

. - Hence, positionality fails in general for innocent strategies.

3.2.2 Positional Injectivity
Figure 3.11: The position (sa’) = (ta) . .. e
5 F (e = o) We now turn ourselves to the weaker condition of positional injectivity:
can an innocent strategy be uniquely identified by its positions? In other
(0] is the set of positions yords, is the relational collapse (—) injective?
reached by well-opened plays of o.

Definition 3.8 — Positional Injectivity
A set of strategies S is positionally injective if for any 0,7 € S,

(o) =(t) > 0=r1.
So, our main question is:

Question 4: are innocent strategies positionally injective?
[40]: Tsukada and Ong (2016), ‘Plays as

Resource Terms via Non-idempotent In-

tersection Types’ Tsukada and Ong [40] already studied the relational collapse of innocent
strategies, but their interpretation in Rel, is parametrized by a set X for
the base type a. In [40], X is required to be countably infinite: this way
one allocates one tag for each pair of chronologically contiguous O/P
moves, encoding the causal / axiom links. In contrast, here we wish to
interpret o with a singleton set {q}, lest we lose the correspondence
between points of the web and positions.

Unlike in [40], we cannot reconstruct an innocent strategy from the
positions of its P-views only. Consider the infamous “Kierstead terms”

Ky = Af@=0=0 £ (1% f (Ay®.x)
[30]: Kierstead (1980), ‘A Semantics for (a—a)—a N N
Kleene's j-expressions’ Ky =A f . f (Ax®. f (/\y y))

(which seem to first appear in [30, Example 3.6]). They only differ by the
very last variable. The strategies [Ky]inn and [K;]inn are innocent, and
characterized by the following maximal P-views:

(a—a)—a)—a (a—a)—a)—a
.qt - q
q -q
Q- q-
Sx € [KxJinn sy € [KyJnn-

Notice they only differ by the last move. However, this difference dis-
appears once we forget the temporal order: both plays clearly reach the
same position (i.e. a tree with two un-ordered branches).

Hence, P-views are not enough to positionally distinguish [Ky[nn and
[[Ky]]"m. Does this mean both strategies have the same positions?

In each play, let us duplicate the Opponent move which the deepest
q" points to - so, the third move of s, and the fifth move of s,. Since
both strategies are innocent, they react by duplicating the following
Player move: the fourth move for s, and the last one for s,. We obtain
the plays s} and s, presented in Figure 3.12 and Figure 3.13. It is clear
that those two plays do not reach the same position — for a start, the
root of (s;) has degree 3 while the root of [Is]’/]] has degree 2. But
more importantly, (s}) will never be reached by a play of [K;]in, —and
conversely, (s;) & ([Kx]innD-

By replicating Opponent moves, we are able to exhibit positions distin-
guishing the two strategies: the static behaviour of an innocent strategy
under replication somehow informs us on temporality.

Most of Chapter 4 will be devoted to turning this idea into a proof.
However, we have only been able to prove the result for total finite
innocent strategies; actually, we know that positional injectivity fails in
the case of infinite partial innocent strategies.

Before moving on to the proof, we introduce the main protagonists of
pointer concurrent games: augmentations.

3.3 Augmentations

In order to identify strategies from their positions, we need to look at
plays where Opponent duplicates moves. But such plays also contains the
order in which Opponent performs the duplications, which is actually
not relevant for our purposes since innocent strategies react in the same
way to each duplication, no matter the order. Instead, we only want to
look at the causal behavior of Player: we are interested in Player’s point of
view, and they don’t know the number or order of duplications. Thus, we
introduce augmentations, a causal version of plays and strategies inspired
from concurrent games.

Intuitively, augmentations are trees of P-views; this connection with HO
games is detailed in Section 3.4.

3.3.1 Definitions

Augmentations are configurations augmented with the causal order of
events from Player.

Definition 3.9 — Augmentation

An augmentation on a negative arena A is g = (|q|, <(q), <4, 94)
such that (q) = (|ql, <, d4) € Conf(A) and (|q|, <;) is a forest

3.3 Augmentations | 45

-9 .
v 4 /
/7 ~t /
.7 9
+/ , //
/
/
q /
+
q

Figure 3.13: 5, € [KyJinn.

P-views are plays where Op-
ponent moves always point to the previ-
ous move (except for the initial move) —
see Definition 2.9 in Chapter 2.

46 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

We could relax some of these
conditions and study for example non
negative augmentations, or non +-
covered ones, or even oo-augmentations
with infinitely many events. All these
extensions are interesting and some of
them will be discussed later, but for now
on we focus on negative +-covered finite
augmentations

(@ —a)—a)—a

Figure 3.14: An augmentation 4.

satisfying:

rule-abiding: if a <) b, thena <, b,
courteous: if a —4 b and pol(a) = + or pol(b) = —,
thena —, b,
deterministic: ifa —4 b™ and a —; c*, thenb =,
negative: if a is minimal for <, then pol(a) = —,
+-covered: if a is maximal for <;, then pol(a) = +,

where pol is the polarity function deduced through the display
map d,;. We write g € Aug(A), and we say that (g) € Conf(A) is the
desequentialization of g or its underlying configuration.

Remark that by courtesy and rule-abiding, a € |g| minimal for <; implies
a minimal for <. Since d; preserves minimality, this implies d;(a)
minimal in A.

Consider Figure 3.14. It shows an augmentation g whose underlying
configuration is (s;), where s/ is the play presented in Figure 3.13. The
causal order —>q is noted with arrows, the static order — @ with dashed
lines (read from top to bottom), and the arena image is given by the
position of each event under its corresponding type component. Unlike
plays, augmentations are not sequential: the vertical order here does not
inform us on —,, and some events may be placed above or under others
only for readability’s sake. Following the condition courteous, the last two
opponent moves of s;, (namely 5 and 7) are incomparable in g: both are
immediate successors of 4 for —; (and — (y)).

By forestiality of (gq)), for any a € [g| non minimal for <), there is a
unique b € |q| such that b — ;) a. We say b is the justifier of 2, written
b = just(a). Likewise, if a is non minimal for <;, then by rule-abiding
there is a unique ¢ —; a. We say c is the predecessor of a4, written
¢ = pred(a). Since arenas are alternating, we have

pol(a) # pol(b) and pol(a) # pol(c).

The predecessor and the justifier of a can be different (e.g. pred(4) = 3
and just(4) = 1 in Figure 3.14), but they must coincide when pol(a) = —
by courtesy. This corresponds to the construction of the P-view of a play,
where we jump directly from an Opponent move to the Player move
which justifies it - which is why augmentations are really trees of P-views,
as we shall see in the next section.

3.3.2 Isogmentations

As with configurations, we care about the arena image and the order
relations, but not so much about the identity of events. Hence, we define
(iso)morphisms of augmentations.

Definition 3.10 — Augmentation (iso)morphism

Consider g, p € Aug(A). An augmentation morphism ¢: g — p is

3.3 Augmentations | 47

amorphism ¢: |q| — |p| with the properties:

arena-preserving: dp o @ =dy,
causality-preserving: if a —; b, then @(a) —, @(b),
configuration-preserving: if a —g) b, then @(a) — @) @(b).

An augmentation isomorphism, noted ¢: q = p, is an invertible
morphism.

Remark that this definition ensures that the roots of an augmentation are
preserved by morphisms.

Definition 3.11 — Isogmentation

An isogmentation of A, written q € Isog(A), is an isomorphism
class of augmentations on A.

We write g € Isog(A) for the isomorphism class of g € Aug(A), and (@ —a)— a) — a
we fix q € Aug(A) a representative of q € Isog(A) (note the change of _
fonts). Remark that in particular, an augmentation isomorphism is a g
configuration isomorphism — hence isogmentations are compatible with o
positions. Isogmentations will be represented as in Figure 3.15, where ~)
we write directly the arena image of events instead of their identity. -

Lemma 3.12 — Representatives and isomorphism classes q .

Consider g € Aug(A) and q € Isog(A). Then, q
q) = d =q.

(1/]) q an (9) 9 Figure 3.15: The isogmentation q = 7.

By definition.

3.3.3 Additional Conditions on Augmentations

Before linking augmentations with P-views and plays, we define several
additional conditions.

Definition 3.13 - Pointed, —-linear and total augmentations

Consider an augmentation g € Aug(A). We set the conditions:

pointed: <4 has only one minimal event,
—-linear: foranya=,b~ € |q|,
if a,b € ming, (q) or pred(a) = pred(b), l
_ for any a € |g| non-minimal
thena = f Or a’i (ll) # a’i (D). , for <, pred(a) is the predecessor of 4, i.e.
total: forany a® € |q|,if dy(a) —=a b/, the only a’ € |g| such that a’ — a.

there exists b € |q| s.t. d4(b) = b’ and a —, b.

If g is pointed, we write init(q) for its unique minimal event, and
we write Aug, (A) the set of pointed augmentations on A.

The totality condition only seems to constrain Opponent — whenever a
move is available to Opponent, they must play it. However, Player must

48 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Figure 3.14: An augmentation 4.

react to any Opponent move since augmentations are +-covered. Hence,
the totality condition ensures that both Opponent and Player keep playing
until they reach maximal events.

For example, the augmentation from Figure 3.14 is:

» pointed (the only initial event is 1),
» total (2 and 4 both have successors with the right arena image),
» not —-linear (because of 5 and 7).

These three conditions are stable by isomorphism, so it makes sense to
define pointed, —-linear and total isogmentations as isogmentations for
which any representative is respectively pointed, —-linear or total.

Moreover, they only constrain minimal events and links from positive
events to negative ones; so —-linearity and totality can actually be defined
as properties of the underlying configuration.

Definition 3.14 — —linear and total configurations
Consider a configuration x € Conf(A). We set the conditions:

—-linear: forany a™, b~ € |x|,
if a,b € min(x) or just(a) = just(b),
then a = b or dy(a) # dy(b).
total: forany a* € |x|, if dx(a) —a b/,
there exists b € |x| s.t. dy(b) = b’ and a — b.

Lemma 3.15

Consider an augmentation g € Aug(A). Then:

g € Aug,(A) if (g) € Conf.(A),

if A is negative, q € Aug,(A) if and only if (g) € Conf.(A),
g is —linear if and only if (g) is —-linear,

q is total if and only if (g) is total.

vyvYvyy

Immediate by courtesy and definitions:

Pointedness. We have min< q(q) € ming,, (g)- Tt A is negative, the
inclusion is actually an equality by courtesy.

—-linearity. For any a~ € |q|, pred(a) = just(a) by courtesy.

Totality. For any a*,b € |q|, we know that a* —; b if and only if
a* — ¢, b by courtesy.

Since these properties are stable by configuration isomorphisms, we can
even consider —-linear or total positions —i.e. positions for which any
representative is respectively —-linear or total.

3.4 Augmentations in PCG v. Plays in HO

We introduced augmentations as “trees of P-views”. Indeed, recall that P-
views are plays in which negative moves always point to their predecessor

3.4 Augmentations in PCG v. Plays in HO | 49

(save from the initial move). This is similar to the courtesy condition
of augmentations, which implies that in an augmentation g, for any
negative event a~ € |q|, just(a) = pred(a). Hence, a P-view already is an
augmentation, where the causal order is given by the sequential order
and the static order by pointers.

But what about plays that may not be P-views? Augmentations intuitively
represent “the tree — or forest — of all the P-views of the prefixes of a visible
play”. In other words, augmentations are visible plays, but quotiented
by the order in which Opponent chooses to move from one program
thread to another. This quotient is formalized with Melliés” homotopy
equivalence [33].

3.4.1 Homotopy relation
Definition 3.16 — Melliés” homotopy relation
Consider two visible plays s and 5" on an arena A. Then s ~p s’ iff
s=ta;bfaybyt’ and s'=ta;bya; bt

with the same pointers.

Remark that since s and s’ are both legal, a, does not point to b; (and
conversely a; does not point to by).

The example plays in Plays(bool) from the beginning of this chapter,
s=q-T q-F and t=q-F q-T,
are such that s ~p t.
Definition 3.17 — Melliés” homotopy equivalence

We define ~g the reflexive transitive closure of ~g.

Since plays are defined on negative arenas, let us consider a fixed negative
arena A. We want to prove that augmentations — or rather, isogmentations
—on A are isomorphic to P-visible positive plays quotiented by ~f:

Claim 1: There is a bijection y : VisPlays*(A),., = Isog(A).

In order to prove this claim, we first define each side of the bijection, and
then show they are inverses.

3.4.2 From plays to isogmentations

We start by defining the construction from VisPlays*(A), ., to Isog(A).

Given a play, we construct an augmentation with the causal order
following the construction of a P-view.

[33]: Mellies (2006), ‘Asynchronous
games 2: The true concurrency of inno-
cence’

The legality condition of plays
requires that each non initial move is
justified by a pointer to an earlier move.

~p is symmetric by definition.

We write VisPlays*(A) for the
set of P-visible positive plays on A.

50 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Definition 3.18 — Augmentation from play
Consider s = s1...s, € VisPlays*(A). We construct q = aug(s) as:

/,qu |‘7| = {1/"-/”}/
+ -7 2 aq(l) = Si,
i—¢) j iff sjpointstos;,
im—y j° iff j=i+1,
it —,j= iff sjpointstos;.

Recall the play s}, from Figure 3.13; then aug(sy) is the augmentation ¢
from Figure 3.14.

It is clear — checking the conditions one by one — that aug(—) always

-1 constructs an augmentation.
3 s 2 7 Lemma 3.19 — aug(s) is an augmentation
>,4 Consider s = s ...s, € VisPlays™(A). Then aug(s) € Aug(A).
6 / ° /// We write g = aug(s).
/ 7 / First, we check that (g) = (||, <(g),dy) is a configuration.

Finite forest. Since s is finite, so is |g|. It is clear from definition that

(l91, <(g) is a finite forest.
Figure 3.14: An augmentation 4.

Minimality-respect. Clear from definition and legality of s.

see Definition 3.1.

Minimality-respecting; Causality-preservation. Consider i, j € |q| such thati — () j. Then

by definition s; points to s; in s. By rigidity of plays, d; (i) —a d4(j).

ae rr<1in(|x|) S dy(a) € rr<1in(|A|).

= A Hence, (g) € Conf(A). We now check g is an augmentation.
Causality-preserving;:

Forestiality. By definition of the prefix order, it is clear that (|g|, <,)

ifa —x b then dy(a) —p dx(b). is a forest

Rule-abidingness. Consideri, j € |q| suchthati <(;) j.By definition,
sj points to s;. If pol(i) = —, then j = i + 1 since s is visible. In both
cases, i —v .

Courtesy. Consider i —; j such that pol(i) = + or pol(j) = —. By
definition of —,, we have s;) points to s;, s0 i —+(g) .

Determinism. Consider i~ —,; jand i~ —, j’,thenj=j =i+ 1.
Negativity. By negativity of A.
+-coveredness. Because s € Plays™ (A).

Hence, g € Aug(A).

Moreover, this construction preserves homotopy, in the sense that homo-
topic plays become isomorphic augmentations.

Lemma 3.20 — Homotopic plays imply isomorphic aug.
Consider s, t € VisPlays*(A) such that s ~g . Then

aug(s) = aug(t).

3.4 Augmentations in PCG v. Plays in HO | 51

By induction on s ~g t. For the base case, if
s=uajbjaybyv and t=uaybra;b;v

with |u| = k, we construct the isomorphism

@: aug(s) = aug(t)
k+1 > k+3
k+2 +— k+4
k+3 +— k+1
k+4 — k+2
i — i otherwise

and one can check it is indeed an augmentation isomorphism.

Consider an equivalence class s € VisPlays™(A), ., . Thanks to the above
lemma, we define isog(s) € Isog(A) as

isog(s) = aug(s) forany s € s.

We have now described one side of the isomorphism from Claim 1:
X:s € VisPlays™(A),., > isog(s) € Isog(A).

Before proving it is indeed a bijection, we focus on the reverse operation.

3.4.3 From isogmentations to plays

Plays are obtained from alternating linearisations of augmentations.

Definition 3.21 — Alternating linearisation

Consider g € Aug(A). An alternating linearisation of g is a total
orderontheeventsof g, notedt =t;...t, with{t; | 1 <i < n} =|q|,
such that:

polarity-alternating:
causality-respecting:

Vi < n, pol(t;) # pol(ti+1) .
Vl < n, tz Sq tj+1 .

We write Alt(q) for the set of alternating linearisations of 4.

For instance, the augmentation g from Figure 3.14 admits two alternating
linearisations:

Alt(g) = {12345678,12347856}.

By determinism of plays, alternating linearisations preserve the immedi-
ate order between negative and positive moves.

Figure 3.14: An augmentation 4.

52 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Lemma 3.22 — Alternating linearisations preserve O-P pairs

Consider an augmentation g € Aug(A).
For any t € Alt(q), if a~ —» b* thena™ —, b*.

Since A is negative, t starts with a negative move. Consider
the prefixes t' =t; ...t; C t. By induction on i, we prove that:

» if i = 2k (i.e. t' ends with a positive event), all the maximal
events of t' are positive;

» ifi = 2k +1 (i.e. t' ends with a negative event), all the maximal
events of t' are positive except exactly one negative event.

Since t starts with a negative move, the invariant H; is true for i = 1.
Since t is alternating, Hyy directly implies Hpj41.

Finally, if i = 2k + 1, then by H; t' has exactly one maximal negative
event. By determinism there is exactly one “available” positive move
next, i.e. a positive move that has not been used yet in t' and is an
immediate successor of an event of t'. Hence t;;; = succ(t;), and
every maximal event of t'*! is positive.

These alternating linearisations can be translated to plays thanks to the
display map.
Definition 3.23 — Display map of a linearisation
Consider g € Aug(A) and t € Alt(g), noted t = t; . . . t,. We define:
dg(t) = 9g(t1) ... d4(ty) € VisPlays*(A)
where d,(t;) points to dy(t;) if and only if t; —) t;.

Since <(;) is a forestial order, d,(t) is a pointing string. It
is alternating by definition, and the pointers follows — (), which
follows —a. Legality is ensured by minimality-preservation of
(), and positivity by +-coveredness of g. Finally, visibility is a

consequence of Lemma 3.22: considering the prefixest' = t; ...t C t,
we can inductively prove that for all i < 1, "d, (t')" = dy([ti]4).

This allows us to consider the set of plays described by an augmentation.

Definition 3.24 — Plays of an augmentation

Consider an augmentation g € Aug(A). Then we define
Plays(q) = {d;(t) | t € Alt(g)} .

C o @ =00 =
0o 9,(b) =T
bt 4+ d;(d)=F Consider the augmentation g € Aug(bool) in Figure 3.16. Then

Figure 3.16: g € Aug(bool). Alt(q) ={abcd,cdab},

3.4 Augmentations in PCG v. Plays in HO

and we obtain the plays

Plays(q) ={q—-T q—F, -F q-T}.

This operation is stable under augmentation isomorphism.
Lemma 3.25 — Isomorphic augmentations have the same plays
Consider g, p € Aug(A). Then

g = p = Plays(q) = Plays(p) .

Considert =11 ...t, € Alt(g) and the isomorphism ¢: g = p.
Then it is clear that (1) . . . ¢(t,) is an alternating linearisation of
p, and that

Ip(p(t1) ... @(ta)) = (1),

s0 dy(t) € Plays(p), and we get Plays(q) € Plays(p). Since ¢ is an
isomorphism, we also have Plays(p) C Plays(q).

This allows us to consider, for any isogmentation q € Isog(A), its plays
Plays(q), which are Plays(g) for any g € q.

Now, we want those plays to be equivalent up to Mellies” homotopy
relation.

Lemma 3.26 — Plays of an augmentation are homotopic

Consider g € Aug(A) and s, s’ € Plays(q).

Then s ~g s’.

Consider t,t" € Alt(q) such that s = d,(t) and s” = d,(t").
Writingt =t;...t; andt' =t} ... 1}, let k be the first index such that
tx # t, (assuming tand t’ are different, otherwise the result is trivial).
We show the equivalence inductively.

First, remark that t (and t;) must be negative by Lemma 3.22 and
determinism of q. Actually, since alternating linearisations preserve
immediate causality from negative to positive events, we must have
t=ua; b va; by wandt' =ua; by v aj b] w. But then,

s ~p dg(uay by ay bj vw) ~p s’
by definition for the first equivalence, and induction hypothesis for
the second one.
For any isogmentation q € Isog(A), we define Plays(q) € VisPlays*(A),.,

as Plays(q),~, . Now we have the other side of the bijection from Claim 1:

x':qe€lsog(A) — Plays(q) € VisPlays*(A)-, .

It remains to show that x is indeed a bijection, whose inverse is as
described above.

53

54 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

3.4.4 x is abijection
Theorem 3.27 — Isogmentations are plays up to ~g
There exists a bijection x: VisPlays*(A),., = Isog(A).
We state that y and its inverse are:

s > isog(s)
Plays(q) <« gq.

First, consider s € VisPlays*(A),.,. We want to prove that
Plays(isog(s)) = s . 3.D

Consider s € s. Writing s = s1...5y, it is clear that 1... n is
an alternating linearisation of g = aug(s), and s = d,(1 ... n) by
definition. Hence, s € Plays(g). Since isomorphic augmentations
have the same set of plays (Lemma 3.25), we have s € Plays(isog(s)).
So we have s C Plays(isog(s)). Moreover, plays constructed from
an augmentation are homotopic (Lemma 3.26), so we also have
Plays(isog(s)) C s, which gives us Equation (3.1).

Now, for the other side, consider g € Isog(A). We want:
isog(Plays(q)) = q. (3.2)

Consider g € qand s € Plays(q), with t € Alt(g) such that d,(t) = s.
Then
lgl ={t,,...,t,} and Jaug(s)] ={1,...,n},

and by definitions and Lemma 3.22, we have an isomorphism
@: t; — i. Hence,
g = aug(s). (3.3)

So we have

isog(Plays(q)) = isog(Plays(q),-~,) (by Lemma 3.26)
= isog(Plays(q)/~,) (by Lemma 3.25)

= aug(s) (by Lemma 3.20)
=q (by (3.3))
which proves (3.2).
is/og(\—)) Hence, we have an isomorphism between isogmentations and visible
VisPlays*(A),., = lsog(A) plays quotiented by Mellies” homotopy equivalence.
~_
Plays(—)

This allows us to interpret innocent strategies in HO games as sets of
isogmentations in PCG (applying x to the set of visible plays of the
Figure 3.17: Correspondence between gtrategy — innocence ensures this set is stable by homotopy). However,
HO and PCG, part 1. sets of isogmentations in general do not translate to innocent strategies
in HO: we obtain a set of plays, but innocent strategies need additional
conditions such as prefix-closure, determinism, and so on. We now focus
on characterizing those sets of isogmentations which do translate to
innocent strategies in HO.

3.5 Meagre Innocent Strategies in PCG | 55

3.5 Meagre Innocent Strategies in PCG

In traditional HO games, innocent strategies can be characterized both by
their P-views (the “meagre” version of the strategy) or their plays (the “fat”
innocent strategy). Likewise, in PCG, innocent strategies have a meagre
representation (a single isogmentation informing us on all the P-views)
and a fat representation (a set of isogmentations corresponding to all pos-
sible plays). Before characterizing sets of isogmentations corresponding
to innocent strategies, we focus on the meagre representation.

3.5.1 Meagre Innocent Augmentations and
Isogmentations

Innocent strategies in HO games are characterized by the fact that Player
does not change their behavior according to the number of duplications
of Opponent moves: they always react in the same way. Therefore, all the
information about the strategy is contained in its P-views, in which there
is no duplication of Opponent moves. So an innocent strategy can be
characterized by a unique augmentation without duplication of negative
events, corresponding to the tree of its maximal P-views.

Definition 3.28 — Meagre Innocent Augmentation (mia)

A meagre innocent augmentation g € MIA(A) is a —-linear aug-
mentation g € Aug(A).

Figure 3.18 features an example of a mia. Since —-linearity is stable by
isomorphism, we can also define meagre innocent isogmentations:

Definition 3.29 — Meagre Innocent Isogmentation (mii)

A meagre innocent isogmentation g € MII(A) is a —-linear isog-
mentation q € Isog(A).

Thanks to the previous isomorphism, any mii can be translated into a
play (up to ~g). We show that mii’s correspond exactly to “trees of the
maximal P-views of innocent (finite) strategies”.

Claim 2: There is a bijection MII(A) = HO'jF”(A).

3.5.2 From innocent strategies to mii’s

Definition 3.30 — MIA of a strategy

Consider a finite innocent strategy o: A in HO. We construct the
augmentation MIA(¢) with:

IMIA(c)] = {t|tCsAseTaomAt+£e€},
sa<(wa() Satb iff thereisa chain ofjustifiers fromb to a,
S S’V“A(O‘) t iff sC t,
Imae)(sa) = a

Figure 3.18: A mia q.

For an innocent strategy o,
the set "o ™ is the set of its P-views:

To™={"s"|se€oa}.

(a—ma—-a)ma—a—a

Figure 3.19: Maximal P-views of [M]Ho

(a—ma—-a)ma—a—a

/’/’ /7
/—bu/,f
//‘ "/
b / 7/ /
e ’ /

Figure 3.20: MIA([M]1o)

56 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Consider for instance the term
M=Af707% Ax Ay fxy

and its interpretation [M]no the innocent strategy defined by the two
maximal P-views presented in Figure 3.19. Then MIA([M]no) is the
augmentation in Figure 3.20, with the following events:

= qs, b=qeqs,
= g6 93 q1, d=qs 93 q1 94,
=96 93 92, f=9693 9 95,

indexing the arena as (q1 = q» = q3) = qu = qs5 = ¢ for clarity.
Also for the sake of clarity, the pointers are not represented in the list
above, but d and f are the plays from Figure 3.19, with

ChCceCd and CbhEeCf.

We check that this construction always define a mia.

Proposition 3.31 — MIA of a strategy
Consider a finite innocent strategy o : A. Then

MIA(o) = (IMIA(0)], < miA(o)) » EMIA(G), OMIA(G))

is an augmentation MIA(c) € MIA(A).

Moreover, MIA(0) is total if and only if ¢ is total.

Proof. We write g = MIA(0).
First, we check that (q) = (|ql, <g,9y) is a configuration.

Finite forest. Since ¢ is finite, so is | g|. It is clear from definition that
(191, <qp) is a finite forest.

Minimality-respect. Clear from definition and legality of plays.

Causality-preservation. Considers, t € |q| such thats —,) t. Then
by definition s = s’ aand t = t’ at” b with b pointing to a in ¢. By
rigidity of plays, dy(s) —a dy(t).

Hence, (g) € Conf(A). We now check g is an augmentation.

Forestiality. By definition of the prefix order, it is clear that {|g|, <;)
is a forest.

Rule-abidingness. Consider s, t € |g| such that s <¢,) t. By defini-
tion, s is a prefix of t, so s < t.

Courtesy. Consider s —, t such that pol(s) = + or pol(t) = —. By
definition of d; and —;, we have s = s"a" and t = s b~ (plays are
alternating). But t is a P-view, so b™ points to a* and s —) .

Determinism. Consider s~ —; t and s~ —; t’. We must have
t=sa*andt’ =sb*, and by determinism of g, f = t'.

Negativity. By negativity of A.

3.5 Meagre Innocent Strategies in PCG | 57

+-coveredness. Strategies are sets of positive plays, so all maximal
events of |g| are positive.

Hence, g € Aug(A). Finally, we check the additional conditions.

—-linearity. Immediate for minimal events. If s* —; s a~ and
s —; s b” with d;(s a) = dy(s b), then a = b and both points to the
last move of s by courtesy, sos a = s b.

Hence, g € MIA(A).

Totality. Immediate by definition: the condition of totality for o
matches exactly the condition of totality for g.

Hence, g is total iff o is total.

This give us our first representation of strategies as isogmentations.
Definition 3.32 — Ml of a strategy
Consider a finite innocent strategy o: A. We define
Mil(o) = MIA(c)

the isomorphism class of MIA(¢). Then Mll(c) € MII(A).
Figure 3.21 features the isogmentation corresponding to our earlier
example of a mia (Figure 3.20).

We now have the first half of the isomorphism from Claim 2:

Mil: o € HO}”“(A) — MIl(c) € MII(A).

3.5.3 From mii’s to innocent strategies

Likewise, a mii corresponds to an innocent strategy in HO games, whose
P-views are constructed from the branches of the isogmentation.

Definition 3.33 — Branches

Consider an augmentation g € Aug(A), and an event a* € |g].
Then we define branch(a) as the augmentation ¢ with:
[6| = [als, the predecessors of a for <,
c—o@yd iff c—@d,

c—»pd iff c—45d,
dg(c) = dy(c).

The set of branches of g is Branches(q).

Looking back at the mia from Figure 3.20, the positive events of g define
three branches, shown in Figure 3.22.

It is easy to check that branches are augmentations (in particular, the
static order still has the correct properties thanks to rule-abidingness).

Figure 3.21: MII([M]no)

branch(f*)

Figure 3.22: Branches(MIA([M]1o))

58 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Lemma 3.34 — Branches are augmentations

Consider an augmentation g € Aug(A). Any branch ¢ € Branches(q)
is an augmentation ¢ € Aug(A).

By rule-abiding of g, we have:
Va® e lql, [als,, Clals,,

which ensures branch(a) verifies all necessary conditions.

We say that an augmentation g € Aug(A) is a branch if g € Branches(q).

Since branches are just restrictions of augmentations, they are preserved
by isomorphism.

Lemma 3.35 — Branches and isomorphisms

Consider two augmentations g, p € Aug(A) with ¢: g = p.
For any ¢ € Branches(g), we have @(&) € Branches(p).

Now, since events in a branch ¢ are totally ordered by <;, there exists
only one alternating linearisation of &.

Lemma 3.36 — A branch defines a unique play

Consider anaugmentation g € Aug(A)and abranch ¢ € Branches(q).

Then Plays(¢) is a singleton, and we write

Plays(6) = {play(6)} .

By courtesy, such a play is always a P-view.
Lemma 3.37 — Branches define P-views

Consider anaugmentation g € Aug(A)and abranch ¢ € Branches(q).

Then play(#) is a P-view.

Every negative move (apart from the initial one) points to
its predecessor thanks to courtesy of 6.

The following lemma formalizes the intuition that branches of an aug-
mentation correspond to P-views of a play.

3.5 Meagre Innocent Strategies in PCG

Lemma 3.38 — P-view from a branch
Consider g € Aug(A), and s = s7 ... s, € Plays(g) corresponding to
the alternating linearisation ey . . . e;.

Then forany s;...5; C* swithi=1,...,n,

Ts1...s;"is defined and "s; . ..s;' = play(branch(e;)) .

We prove the equality by induction on i (which also proves
the existence).

First, remark that e;_; —; e/ by Lemma 3.22.
If s;_4 is initial, so is e¢;_1, and:

Ts1...si' =s;_1s; and |branch(e;)| = {ei—1, e}

and the equality is clear.

Otherwise, s;-1 points to some s; by legality of s, and (if it's defined):
"s1...8;' ="s1...5;"8i-15;.

By induction hypothesis, "s; . .. s;" is defined and:
Ts1...s; = play(branch(e;)) .

1, and by courtesy

But since s;_, points to s]fr, we have e]fr —>(p) €

+ - .
e =g ey So, we have:
€j —>q €i-1 —>q €i,

and by rigidity just(e;) € branch(e;). It is clear that branch(e;) is
branch(e;) “extended” with e;_; and e;, and:

play(branch(e;)) = play(branch(e;)) si-1 si ,

which gives us the desired equality.

Now we can construct the reverse part of the isomorphism from Claim 2.

Proposition 3.39

Consider g € MII(A). Then we construct an innocent strategy
HOstrat(q) whose P-views are:

{play(branch(e)) | e € |q|*} U {e} .

Moreover, HOstrat(q) is total if and only if q is total.

All those plays are P-views by courtesy of q (Lemma 3.37).
Since ¢ € T HOstrat(q) ™, the strategy is non-empty. It is prefix-closed
by Lemma 3.38. Finally, all of these P-views are compatible by —-
linearity and determinism of q. Hence, HOstrat(q) is an innocent
strategy. Moreover, both definitions of totality coincide.

59

60 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

Remark that HOstrat(q) does not depend on the choice of representative.

3.5.4 The isomorphism

Finally we check MIl and HOstrat are inverses.

MII(-)
— >
HO'JD”(A) =~ MII(A) Theorem 3.40
\/
HOstrat(—) Consider a negative arena A, then there exists a bijection
o | ~
Figure 3.23: Correspondence between Mil: HO ; " (A) = MII(A) .

HO and PCG, part 2.
Moreover, MIl preserves totality.

Consider o: A innocent and g € MII(A). We show:

HOstrat(Mll(0)) = ¢ and MII(HOstrat(q)) = q.

For the first equality, consider a non-empty play s € ™o ™. Then
s € |MIl(0)|, and by construction it is clear that play(branch(s)) = s,
so s € THOstrat(MIl(g))™.

Conversely, consider s € THOstrat(Mll(0))™ with s # ¢, then s =
play(6) for some ¢ € Branches(MIA(c)). By construction, s € "o ™.
Hence "¢ ™ = ™ HOstrat(MIl(c)) ™.

Likewise, we can show that MII(HOstrat(q) = q by constructing:

g = MIA(HOstrat(g)) .

Finally, both constructions preserve totality.

We now have the second part of our correspondence between HO and
PCG (Figure 3.23); there is an isomorphism between isogmentations
in PCG and (homotopy equivalence classes of positive visible) plays
in HO, and there is another isomorphism between meagre innocent
isogmentations in PCG and finite innocent strategies in HO. Can these
two isomorphisms be shown to agree, and is there a way to deduce, for
example, the isogmentations obtained from an innocent strategy o via
isog(—) if we only know MIl(c)? We show in the next subsection how
these isogmentations can be constructed with the notion of expansions.

3.6 Fat Innocent Strategies in PCG

3.6.1 Expansions

Besides including meagre representations of innocent strategies, aug-
mentations can also represent their expansions, i.e. arbitrary plays (with
Opponent’s scheduling factored out).

3.6 Fat Innocent Strategies in PCG | 61

Definition 3.41 — Expansion

Consider an arena A and p € MIA(A). An expansion of p is an
augmentation g € Aug(A) such that:

simulation: there is a (necessarily unique) morphism ¢: g — p.

We write exp(p) the set of expansions of p.

The relationship between a mia p and one of its expansions g € exp(p) is
analogous to that between an arena A and a configuration x € Conf(A):
g explores a prefix of p, possibly visiting the same branch many times.
However, determinism ensures that only Opponent may cause duplications,
and +-coveredness ensures that only Opponent may refuse to explore
certain branches — if a Player move is available in p, then it must appear
in all corresponding branches of .
(a—-a—-a)ma—a—a

Recall the mia p from Figure 3.20. Then exp(p) includes for instance the . (/,//’"//
augmentation g from Figure 3.24, where Opponent chooses to duplicate o b)
the event ¢~ and refuses to explore ///” ' S

Uniqueness of the morphism follows from —-linearity and determinism.
Lemma 3.42 — Unicity of morphism for expansions of mia’s Figure 3.20: p € MIA(A).

Consider p € MIA(A) and g € exp(p).

Then there exists a unique morphism ¢: g — p.

The existence is given by the definition of g € exp(p).

Assume there exist two morphisms ¢, 1: g — p. Consider a mini-
mal (for <;) a € |q| such that ¢(a) # Y (a).

If a is minimal in g, then dy(a) is minimal in A. By causality-
preserving, we also have ¢(a), 1(a) minimal for <, and by arena-
preserving we have d,(¢(a)) = d,(¢(a)), so by —-linearity of p,
p(a) = P(a).

Therefore, a has an predecessor b = pred(a). By hypothesis, ¢(b) =
Y(b), hence by causality-preservation of morphisms, we have

@(b) —p @(a) and @(b) —, P(a).

If a is positive, then b must be negative, and by determinism
¢(a) = P(a), contradiction. If a is negative, then b must be positive.
Moreover, by arena-preservation of morphisms,

Figure 3.24: g € exp(p), with:

1>a, 40d,
@:{2—b, 5m0¢,
3t>c¢, 6+d.

Ip(p(a)) = dg(a) = 9y (Y(a)).

By —-linearity of p, ¢(a) = ¢(a), contradiction.

Moreover, remark that by definition, two isomorphic augmentations have
the same expansions. This allows us to lift the definition of expansions
to isoexpansions.

62 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

For any p € Aug(A), we write
P € Isog(A) for the isomorphism class of
p. For any q € Isog(A), we set g € Aug(A)
a representative of g. - Consider g € MII(A). Then we define the isoexpansions of q as:

Definition 3.43 — Isoexpansion

iexp(a) = {p | p € exp(9)} .

3.6.2 Fat Innocent (Iso)expansions

In HO games, plays of an innocent strategy are determined by the
P-views of the corresponding meagre innocent strategy. Likewise, in
PCG, isogmentations in an innocent strategy are expansions of a meagre
innocent augmentation.

Definition 3.44 — Fat Innocent Expansion

Consider g € MIA(A). Then we say exp(q) is the fat innocent
expansion of g, noted exp(q) € FIE(A).

We can obviously lift this definition to isogmentations.
Definition 3.45 — Fat Innocent Isoexpansion

Consider g € MII(A). Then we say iexp(q) is the fat innocent
isoexpansion of g, noted iexp(q) € FII(A).

This alternative presentation of innocent strategies is equivalent to using
only the meagre isogmentation: constructing the fii of a mii is an injective
operation.

Proposition 3.46 — Injectivity of iexp(—)
Consider two fat innocent isoexpansions f, g € FII(A). Then:
f=g ifandonlyif thereexistsqe MII(A), f =g = iexp(q).

If. Immediate.

Only if. Assume f = g. By definition of FII(A), there exist isogmen-
tations q, p € MII(A) such that f = iexp(q) and g = iexp(p). We write
g and p for the respective representants of q and p. By hypothe-
sis, exp(q) = exp(p); which means in particular that g € exp(p)
and p € exp(q). By unicity of morphisms for expansions of mia’s
(Lemma 3.42), we obtain q = p.

In other words, we obtain an isomorphism iexp: MII(A) = FII(A), which
composes with the previous isomorphism for meagre innocent isogmen-
tations:

iexp o Ml Ho;?"(A) = FII(A).

3.7 A few words on Infinite Strategies | 63

3.6.3 The isomorphisms isog(—) and iexp o MIl(—) coincide

We now have isog(—) an isomorphism between (positive visible) plays
(quotiented by homotopy) and isogmentations on the one side, and
iexp o MIl(—) an isomorphism between finite innocent strategies and some
sets of isogmentations on the other. Since innocent strategies are entirely
defined thanks to their P-views, and mii’s are “trees of P-views”, these
two notions coincide:

Proposition 3.47 — Compatibility of both isomorphisms
Consider o € HO']?”(A). Then:

isog(o) = iexp(MIl(0)) .
Conversly, consider p € MII(A). Then:

HOstrat(p),~, = Plays(iexp(p)) .

In particular, this ensure that the positions of an innocent strategy in HO
are the positions of its interpretation as a mia.

Proposition 3.48 — Positions in HO and PCG

Consider an innocent strategy o: A. Then (c)) = (MIA(c)).

3.7 A few words on Infinite Strategies

Until now we only considered finite objects, but infinite innocent strategies
can also be represented in PCG. Obviously, innocent infinite strategies
are still sets of finite plays, so our first traduction isog(—): HO — PCGi is
actually defined from innocent strategies to isogmentations. But what
about the meagre representation? We still want a “tree of the P-views”
but now we must represent infinite sets of P-views, so we extend our
previous definitions of configurations and augmentations to infinite
objects.

Definition 3.49 — co-configuration

An co-configuration x € Conf*(A), is a tuple x = (|x|, <x, dx) such
that (| x|, <y) is a forest, and dy : |x| — |A| is the display map with:

minimality-respecting: for any a € |x|,
a is <y-minimal iff dy(a) is <p-minimal,
causality-preserving: Va,b € |x|,if a —, b then dyx(a) —p Ix(D).

If x has only one minimal event, we say that x is well-opened,
noted x € Conf(A), and we note init(x) the minimal event.

As for (finite) configurations, an co-configuration can be seen as visiting
a prefix of the arena, with possible reopenings. A polarity function for

Ifoe HO'jP”(A), we define:
Vis(o) = 0 N VisPlays(A)
the set of visible plays of ¢, and:

isog(o) = {isog(s/.,) | s € Vis(0)}.

HO™ () MIC), ppa)

isogb\ jexp(—)

FII(A)

Figure 3.25: Correspondence between
HO and PCG, part 3.

An innocent strategy is infi-
nite if its set of P-views is infinite.

64 | 3 Static Pointer Concurrent Games: Configurations and Augmentations

x can be unambiguously deduced from the arena with, for any a € |x|,
pol.(a) = pola(dx(a)).

(Iso)morphisms of co-configurations are defined just as in the finite case,
as well as co-positions.

Definition 3.50 — co-augmentation

An co-augmentation g on an arena A, noted g € Aug™(A), is a tuple
q= <|q|r S[Iq[] ’ Sqr aq>r where [[L]D = <|q|r S[[ql] ’ 8!]) € Confoo(A)' and
(lgl, <4) is an order satisfying:

finitary: foralla € |q|, [a]; = {a’ € |q| | a’ <; a} is finite,
forestial: forall ay,ax <; a, then a; <4 as or ax <, ay,
rule-abiding: for all ay, az € |q|, if a1 <¢g) a2, then a; <; as,
courteous: if a —; b and pol(a) = + or pol(b) = —,
then a — (q) b,
deterministic: foralla™ —», b{r and a~ —; by, then by = by,
negative: for all a € |g| minimal for <;, we have pol(a) = —,

+-covered: for all a € |g| maximal for <;, we have pol(a) = +.
We call (g) € Conf®(A) the desequentialization of 4.

As before, we can extend the definition of (iso)morphisms and isogmen-
tations. Isomorphism classes of co-augmentations of A will be called
co-isogmentations, noted Isog™(A).

Adapting the constructions from the previous section, we can extend the
meagre representation to infinite innocent strategies. Given an innocent
strategy o, it can be translated either to an infinite isogmentation g, or to
the set of all finite extensions of g.

3.8 Conclusion

We now have a model with:

» configurations / positions representing the “static” informations
contained in a play,

» augmentations / isogmentations representing “trees of P-views”,

» a notion of expansion matching the construction of an innocent
strategy from the set of its P-views,

along with isomorphisms between HO and PCG for innocent strategies,
preserving finiteness and totality.

The next chapter present a first result obtained thanks to this model:
innocent total finite strategies are positionaly injective.

The compositional aspect of the model will be studied in Chapter 6.

Positional Injectivity, for PCG
and for HO

We now focus on positional injectivity, first for finite total meagre innocent
isogmentations in PCG, then for finite total innocent strategies in HO.

Drawing inspiration from the proof of injectivity of the relational model
for MELL proof nets [18], we construct characteristic expansions in
Section 4.1 in such a way that we can track down duplications of negative
events in the positions in order to recover a “sufficient” portion of the
causal structure. We explain what we mean by sufficient in Section 4.2
with the introduction of several bisimulation relations, between events
and between augmentations. Finally, we deduce positional injectivity for
PCG in Section 4.3. Section 4.4 goes back to HO games and presents a
counter-example for positional injectivity in the case of infinite, partial
innocent strategies.

In all this chapter, A is a negative well-opened arena, unless stated
otherwise.

4.1 Duplicating Opponent Moves

4.1.1 Proof idea

We already know that given a position x € Pos(A), we cannot in general
uniquely reconstruct its causal explanation. Consider for instance g and
p the mia’s for K and K, defined in Subsection 3.2.2:

(@ —a)—a)—a (@ —a)—a)—a

,72+//,/ L
“ ,/ “ ,/
R Ty
K “ B “

q = MIA([K] o), p = MIA([Ky]Ho)-

Then both augmentations reach the same position (Figure 4.1): if we
forget the causal order, we cannot distinguish between the two branches
of the position anymore.

However, we already constructed two positions distinguishing between
Ky and K in Subsection 3.2.2, by duplicating the Opponent move
justifying the last Player move. This triggers two different reactions from
the two augmentations: in g, 6" is justified by 37, so Player reacts to the
duplication of 3~ with a copy of 4". However, in p, 6™ is justified by 57,
so Player reacts to the duplication of 5~ with a copy of 6*.

4.1
4.2
4.3
4.4
4.5

Duplicating Opp. Moves 65

Bisimulation Relations . 70

Pos. Inj.in PCG 81
Pos.Inj.inHO 86
Conclusion 88

[18]: de Carvalho (2016), “The Relational
Model Is Injective for Multiplicative Ex-
ponential Linear Logic’

Figure 4.1: (9) = (p).

66 | 4 Positional Injectivity, for PCG and for HO

for any g € Aug(A), (g) is the
position (g) reached by the desequen-
tialization of g. For any p € MIA(A),
exp(p) N Aug, (A),
{(@) [7 €exp,(p)}-

exp,(p) =
w =

(@ —a)—a) —a

Figure 4.3:y' = (p').

We obtain the following expansions:

((a = a)—a)—a (a—a)—a)—a
+ /‘///,/ -t ‘ //
Lz 7 .7 2 ’
//// // A " //
7 // // \ /
/ /l /l > 4+
K \} ! e ~ ' g
/ 4+ . ,
! // 6+ / 7/
Y)
/ Vi
64/- / 6/+ «

q’ € exp(q), p’ € exp(p).

Then it is clear that (4) # (p’) (see Figures 4.2 and 4.3).

Furthermore, consider y’ = (p’) the position represented in Figure 4.3.
The only (up to iso) expansion of a mia yielding y’ as a position is p”:
every other attempt to guess causal wiring fails, because of —-linearity
and the cardinality of duplications. But p’ is an expansion of the unique
maximal branch of (the mia representing) K,;; which means that if we are
given y’ and the information that y’ comes from a “maximal” expansion
of a mia 7 (in the sense that it explores all branches at least once), then
we know 7 can only be (the mia representing) K.

This suggests a proof idea: given p; € MIA(A), we seek to construct an
expansion q; € exp(p1) whose position would uniquely characterize p1,
in the sense that for any p, € MIA(A) such that (p1)) = (p2), the fact
that (71) € (p2) implies that p; = ps.

Such expansions will be called characteristic expansions; we give the
definition in Subsection 4.1.2. Then in Section 4.2, we define bisimulations
between augmentations, aiming to prove that

1. characteristic expansions reaching the same position are bisimilar
(Section 4.3),

2. if two MIA have bisimilar characteristic expansions, they are actu-
ally equal (up to isomorphism) (Subsection 4.2.2).

4.1.2 Characteristic Expansions

Characteristic expansions are expansions with conditions on the cardinality
of duplications of Opponent moves. Hence, we first need to define those
sets of duplicated moves.

4.1 Duplicating Opponent Moves | 67

Definition 4.1 — Fork

Consider an augmentation g € Aug(A). A fork in g is a maximal
non-empty set X C |q| such that:

negative: foralla € X, pol(a) = —,
sibling: either all 2 € X are minimal for <,
or there exists b € |gq| s.t. foralla € X, b — a,
identical: foralla,b € X, dy(a) = d4(b).

We write Fork(g) for the set of forks in 4.

For p € MIA(A) and g € exp(p), the forks of g are exactly the sets of
duplicated Opponent moves. Recall the augmentation g from Figure 3.14
for instance; Figure 4.4 shows the three forks of g, where 5 and 7 belong
in the same fork, as copies of the same Opponent move.

Moreover, the definition of forks only depends on causal links of the form
a* —, b~; and by courtesy, these are exactly the static causal links of the
form a® — ;) b~. Hence, forks are preserved by desequentialization and
isomorphisms.

Lemma 4.2 — Forks of a configuration

Consider an augmentation g € Aug(A). For any p € Aug(A) such
that : (g) = (p), we have:

VX C |q|, X € Fork(g) © ¢(X) € Fork(p).

By courtesy and the fact configuration morphisms preserves
the static order and the arena image.

This allows us to consider Fork((g)), where the fact that X € Fork((g))
can be deduced without knowing <,. For instance, Figure 4.5 shows the
forks of the configuration (g), where g is the augmentation from Figure
4.4 — remark that both sets of forks coincide.

Consider a fork X. Since augmentations are +-covered and by causality-
preserving of morphisms and determinism of augmentations, all Player
moves in g caused by Opponent moves in X are copies of the same Player
move in p. So, if X has cardinality X = n and we find exactly one set Y
of “equivalent” Player moves of cardinality §Y = m > n, we may deduce
that the successors of the events of X are in Y. We will formalize what
we mean by “equivalent” in Subsection 4.2.3; for now it suffices to think
of those sets as sets of Player moves “behaving the same way” in the
position (e.g. a minimal requirement would be that all moves of such a
set have the same arena image). In Figure 4.4 for example, the fork X3
has two elements 5 and 7. The set of their successors can only be {6, 8}
it cannot contain 4 by acyclicity of —;, and it cannot be {2, 6} or {2, 8}
because 2 does not have the same arena image as the others. Hence, in
this very simple case, we are able to deduce causal links thanks to the
cardinality of forks.

In general though, distinct Opponent moves may trigger identical Player
moves, so that the cardinality of a set Y of “similar” Player moves is the

Figure 4.4: Forks of an augmentation 4.

In particular, Lemma 4.2 im-
plies that for any two augmentations
q,p € Aug(A) such that ¢: g = p, we
have

VX C |q|, X € Fork(g) © ¢(X) € Fork(p).

(@ —a)—a)—a

Q)

/2'/ // X]

Figure 4.5: Forks of a configuration (g).

68 | 4 Positional Injectivity, for PCG and for HO

sum of the cardinalities of the predecessor forks. To allow us to identify
these predecessor sets uniquely, the trick is to construct the characteristic
expansion so that all forks have cardinality a distinct power of 2, making
it so that the predecessor forks can be inferred from the (unique) binary
decomposition of #Y. This brings us to the following definition.

Definition 4.3 — Characteristic Expansion

Consider a MIA p € Aug(A). A characteristic expansion of p is an
augmentation g € exp(p), with ¢ : § — p, such that:

fork-injective: for X,Y € Fork(q), if $X = #Y then X =Y,
well-powered: for X € Fork(q), there is n € N such that §X = 2",
—-obsessional: for a* € |q|,if p(a*) —, b,

there is a* —, a’ such that p(a’) = b~.

The condition —-obsessional means that g has at least one copy of every
negative element of p; since augmentations are +-covered it also copies
at least once every positive element of p. Hence, g is characteristic in the
sense that it contains all the information given in p.

This definition is stable by isomorphism, allowing us to consider charac-
teristic iso-expansions, as in Figure 4.6.

(e
x4
q -9
X8
q; -+ 9qg

@) a) a

X8
#1X; =2 =21
X, =4 =22
X3 #X; =8 =23

Figure 4.6: A characteristic (iso-)expansion q for the mia representing K, with four forks.
We only write — ;) when it differs from —4, and use indices to indicate the number of duplications.

g € Aug(A) is total if for any
a*t € |q|, if there exists b’ € |A| such that
dg(a) —>a b’, then there exists b € |q]
such that d;(b) = b’ and a —, b.

Given a mia p and an augmentation q € exp(p), is it possible to deduce
from the position (g) whether or not ¢ is a characteristic expansion of p?
The first two conditions, fork-injective and well-powered, only constrain the
cardinality of forks, and Fork(g) = Fork((gq)). However, we cannot say in
general if q is —-obsessional: if an Opponent move (available in A) does
not appear in g, is it because it never occurs in p, or because g forgot
to copy it? Without knowing p it is impossible to conclude in general.
However, —-obsessional expansions have the very interesting property of
preserving totality: for any p € MIA(A) and q € exp(p) a characteristic
expansion of p, q is total if and only if p is total.

4.1 Duplicating Opponent Moves | 69

Lemma 4.4 — Totality of characteristic expansions

Consider p € MIA(A) and a characteristic expansion g € exp(p).

Then g is total if and only if p is total.

Immediate by definition.

Moreover, if we know that p is total, then g € exp(p) is —-obsessional if
and only if it is total - which means, by courtesy, that being —-obsessional
is a property of (g) in that case. All in all, we get that for a total mia p, we
can deduce if an expansion g € exp(p) is characteristic only by looking at
its position (g).

Lemma 4.5 — Positions of characteristic expansions

Consider p € MIA(A) a total augmentation, and q € exp(p).

Then g is a characteristic expansion of p if and only if (g) is
fork-injective, well-powered and total.

We define fork-injectivity and well-poweredness for a
position as fork-injectivity and well-poweredness for any of its
representative. The result is trivial by courtesy and totality of p.

Consider a well-opened! arena A and two total mia p; and p, such that
(p1) = (p2D. Then for any q; a characteristic expansion of p, there
exists o € exp(p2) such that (1) = (42), and by the above lemma g3 is
a characteristic expansion of p».

How different can be those two characteristic expansions q; € exp(p1)

and g2 € exp(p2)? Since (g1) = (42), a first guess would be isomorphic;
however that is not always true. Consider the following total mia p:

(a—a)—a)—(a—a—a) —a

. --==bt
7 - _ /
// / //
’ /
)+/ //
L-e o
v -
K ,/’/
+ fc’*"//
31 - 2

Since ¢~ and ¢ trigger (copies of) the same events in p, we can construct
several non-isomorphic characteristic expansions of p reaching the same
position. For instance, if ¢~ and ¢~ are duplicated respectively 2 and 4
times, we obtain 2 + 4 = 6 moves that are copies of c’f’ or of (,’;' , with no
way of recovering precisely if a copy corresponds to ¢} or e,

1: We need well-openedness because we
only consider pointed positions in { —);
the results can be easily extended to a
general negative arena A by decompos-
ing A in a product of well-opened arenas
A1, ..., A;. Any total p € MIA(A) can be
decomposed as a tuple of pointed mia
pi € MIA(A)).

Figure 4.7: A mia p.

70 | 4 Positional Injectivity, for PCG and for HO

For any morphism I', we write:

» dom(T) for its domain,
» cod(T’) for its codomain,

i.e. T: dom(T') — cod(T).

So, characteristic expansions have some degree of liberty in swapping
forks around: they might have “the same branches” with different mul-
tiplicity. Hence, we need a weaker relation between 41 and g,. Thus
we define bisimulations between augmentations, seeking to construct a
relation that is both “weak enough” to allow such changes in multiplicity,
and “strong enough” to ensure that g1 ~ g, implies p; = p,.

4.2 Bisimulation Relations

4.2.1 Bisimulations across an isomorphism

Let us first focus on bisimulations between augmentations reaching the
same positions. Consider q, p € Aug(A) such that ¢: () = (p). Given
a € |g| and b € |p|, we need a predicate a ~ b expressing that a and
b have “the same causal follow-up, up to the multiplicity of Opponent
duplications”.

In particular, @ and b must have “the same pointers” —but that cannot be
strictly true since they live in different sets of events!

An idea that might first come to mind is to consider a ~¥ b parametrized
by ¢, asking that the pointers are equal via ¢. But as the bisimulation
unfolds, this requirement is too strong: as seen in the previous example,
an isomorphism ¢ between desequentializations is not enough to ensure
that all pointers match via ¢.

So our actual predicate has form a ~I‘€’ b where I' is a context stating a
correspondence between negative moves established in the bisimulation
game so far.

Definition 4.6 — Context

Consider g, p € Aug,(A) with @: (q) = (p).

A context I between g and p is a bijection such that:

well-defined: dom(I') C |g| and cod(T) C |p|,
negative: pol(dom(T')) € {-},
arena-preserving: for all a € dom(I'), d,;(a) = d,(I'(a)).

In the negative condition, we ask for inclusion rather than equality to allow
empty contexts. Remark that by arena-preservation, this is equivalent
to ask pol(cod(I')) € {—}. This ensures that for any context I' between
augmentations g and p, then T! is a context between p and g.

We now give a first notion of bisimulation across augmentations.

Definition 4.7 — Bisimulation (between events)

Consider g, p € Aug,(A) with @: (q) = (p).
For any a € |q|, b € |p| and T a context, we say that a context

enables a,b, noted I + (a, b), if:

(a) foralla’ € |q|,if a’ >, a then a’ ¢ dom(I');
(b) forall b’ € [p|,if b’ >, b then b’ ¢ cod(I).

We define a predicate:
a and b are bisimilar via ¢ with the context I',

written a ~f b, which holds if, firstly:

)] 3,4(11) = ap(b)?
(2) T+ (a,b).

If a is positive, we additionally require:
(3) if just(a) € dom(T),
then just(b) € cod(I') and I'(just(a)) = just(b);
(4) if just(a) ¢ dom(T),
then just(b) ¢ cod(I') and @(just(a)) = just(b).
Finally, the following two bisimulation conditions hold inductively:
(5) if a* —; a’, then thereis b" € |p| such that b —, b’
and a’ Nl(fu (@) b’, and symmetrically;
(6) if a= —; a’, then there is b’ € |p| such that b —, b’
7 P o1 :
and a’ ~[b’, and symmetrically.

Of particular interest is the case a ~$7 b over an empty context, written

simply a ~% b. From this, we deduce a relation between augmentations.
Definition 4.8 — Bisimulation (between augmentations)

Consider g, p € Aug,(A) with ¢@: (q) = (p).

We say that g and p are bisimilar via ¢, noted g ~¢ p, if
init(g) ~% init(p) .

Bisimulations allow us to express that two characteristic expansions
with isomorphic configurations are “the same”. Furthermore, they enjoy
equivalence properties:

Lemma 4.9 — Equivalence properties of bisimulations

Consider g, p, r € Aug,(A) with @: () = (p) and ¢: (p) = (7).
For any events a € |g|, b € |p|, ¢ € |r| and contexts I, A, we have:

d

reflexivity: a ~ a,

¢ ¢!
symmetry: ifa ~; bthenb ~_, a,

transitivity: if a ~1(f bandb ~AJ ¢ with cod(I') = dom(A),
Yop

then a ~ Aol

C.

4.2 Bisimulation Relations 71

just(a) is the (unique) a’ € |q|
such that a’ () 4

Regarding condition (5):
I' U {(a’,b’)} remains a bijection since
I + (a,b) implies that a’ ¢ dom(T') and
b’ ¢ cod(T).

init(q) is the initial event of ¢,
i.e. the event minimal for <g.

72

4 Positional Injectivity, for PCG and for HO

Immediate by induction.

Recall the proof sketch for positional injectivity at the end of Subsection
4.1.1. Given two total mia p1, p» € Aug,(A) and two characteristic expan-
sions g1 € exp,(p1) and g2 € exp,(p2) with @: (g1) = (g2), we want to
prove:

L if @: (q1) = (g2) then g1 ~% g2,
2. if g1 ~% g, then p1 = p».

We start by proving the second proposition.

4.2.2 Bisimulations between non-isomorphic
augmentations

To achieve that, we exploit compositional properties of bisimulations.
More precisely, we define bisimulations between augmentations over
non-isomorphic configurations, and we show that q; € exp,(p;) induces
a bisimulation g; ~ p;. We then find a way to compose

pr~ g1~ q2 ~ p2 (4.1)
to deduce p; ~ p2, which will imply p1 = po.

Obviously we cannot expect there to be an isomorphism between (g;)
and (p;), as characteristic expansions have by construction many more
events. Hence we introduce a variant of Definition 4.7 — where we remove
condition (4) and ask that all pointers go through I":

Definition 4.10 — Bisimulation (for non-iso augmentations)

Consider g, p € Aug,(A). For any a € |q|, b € |p| and a context I’,
we say that a and b are bisimilar with the context I, writtena ~r b,
if:

0] aq(a) = ap(b)r

(2) T+ (a,b).
If a is positive, we additionally require:

(3) just(a) € dom(I') and T'(just(a)) = just(b).
Finally, the following two bisimulation conditions hold inductively:

(4) if a* —, a’, then there is b" € |p| such that b —, b’
and a’ ~ry((,p)y b’, and symmetrically,

(5) ifa~ —; a’, then there is b” € [p| such that b —, b’
and a’ ~t b’, and symmetrically.

We say that g and p are bisimilar, written g ~ p, if:

init(‘i) ~{(init(q),init(p))} init(P) .

It may seem confusing that we use the same notation for both kinds of
bisimulations. This is justified by the fact that whenever both definitions
apply, they coincide:

4.2 Bisimulation Relations 73

Lemma 4.11 — Both bisimulations coincide

Consider g, p € Aug,(A), and ¢: (q) = (p).
Then g ~¥ p if and only if g ~ p.

If. Straightforward from Definition 4.7 and Definition 4.10:
case (4) of Definition 4.7 is never used.

Only if. For a € |gq|, we define the negative predecessors of 4 in g:
[al; ={a"€lq| | a’ <4 a and pol(a’) = -}.
Givena € |q|, b € |p|, T+ (a,b), we say that I is complete if

[a]; € dom(I) and [b], € cod(I).

For all events a € |g|, b € |p| and complete context I' (a, D), if
a ~<rp b then a ~r b. The proof is immediate by induction: the clause
(4) of Definition 4.7 is never used from the hypothesis that I is
complete. We apply this to the roots of g, p:

init(q) ~{(nit(q),init(py)y INIt(P),

which is exactly the definition of g ~ p.

We still very much need to use the ~% bisimulation sometimes!
All isomorphisms between g and p associate init(q) with init(p) (because
both augmentations are pointed), but they can differ for other events.
Expliciting ¢ will be necessary for some parts of the positional injectivity
proof, since we compare all events of the augmentations and not only
the roots.

This version of bisimulation also enjoys equivalence properties:
Lemma 4.12 — Equivalence for bisimulations w/o iso

Consider g, p, r € Aug,(A).

For any events a € |q|, b € |p|, c € |r| and contexts I, A, we have:

reflexivity: a Niday; A
symmetry: ifa ~r b thenb ~r-1 4,
transitivity: if a ~r b and b ~ ¢ with cod(I') = dom(A),
then a ~por C.

Similar to the proof for Lemma 4.9.

Finally this bisimulation allows us to express what we want: the fact
that Fwo augme'ntanons are .the same, up .to Oppc?nen't du'p'hC?thl’lS . I'n g € exp(p) with the mor-
particular, a pointed expansion g of a pointed mia p is bisimilar to p if phism ¢ is a —-obsessional expansion

and only if it is a —-obsessional expansion. if for all a* € |q|, if p(a) —p V', then
there exists b € |q| such thata —; b and

. b)=10"
We first state that events of a —-obsessional expansion g and their images v(b)

in p are bisimilar. First, recall that for any mia p € Aug,(A) and ¢: ¢ — p,

74 | 4 Positional Injectivity, for PCG and for HO

for any event a € ||, we define the negative predecessors of 4 in g as:
[a]; ={a" €lql | a’ <5 aand pol(a’) = —}.

From the definition of augmentation morphisms, there is an order-
isomorphism:

I7: [al; = [p(@)], -
Finally, we define the co-depth of a as the maximal length k of a causal
chaina = a; —; ... —4 ax.

Lemma 4.13 — Bisimulation for —-obsessional expansions
Consider p € MIA,(A) and g € exp, (A) a —-obsessional expansion
with the morphism ¢: g — p.

Then, for any a € g,
a~pe pla).
By induction on the co-depth of a € |g|. We check that
a ~po ¢@(a), following Definition 4.10.

First, (1) and (2) are immediate by the definitions of ¢ and Ty .
(3). If a is positive, then:
just(a®) € [a]; = dom(T'?),
just(p(a)) € [p(a)], = cod(Ty).
Moreover just(@(a)) = @(just(a)) since ¢ preserves the static order.

(4). Assume a* —; b™. Then ¢(a) —, ¢(b), and by induction
hypothesis we have:

b~y (b).
But [b~]; = [al; U {b} and [p(b)7], = [p(a)], U {¢(b)}, so finally:
b ~rouwpmn PO -

The same reasoning applies for the symmetric condition. Assume
@(a)t —, b, then ¢~ (b) exists by —-obsessionality of 4.

(5). Same as for (4), except [b7]; = [a]; and [@(b)"]; = [p(a)],.
The same reasoning applies for the symmetric condition. Assume

@(a)” —>p b, then ¢~ (b) exists by +-coveredness of 4.

We can now prove the following proposition:
Proposition 4.14 - Condition of —-obsessionality

Consider g, p € Aug,(A) with p a mia.

Then, g is a —-obsessional expansion of p if and only if g ~ p.

If. We construct ¢: g — p for all a € |gq| by induction
on <;. The image is provided by bisimulation, its uniqueness by

determinism and —-linearity. Condition (4) of bisimulation ensures
—-obsessionality.

Only if. For ¢: q — p and a € |g|, we have

a ~re p(a)

by Lemma 4.13. In particular,
init(q) ~{((Gnit(q),init(p))} iNit(p)
with ri‘fjn(q) = {(init(q), init(p))}.
Altogether, we have:
Proposition 4.15

Consider two pointed mia p1, p2 € MIA.(A) and two characteristic
expansions g1 € exp,(p1) and g4 € exp,(p2) with an isomorphism

¢: (q1) = (92).
If g1 ~% g2, then p1 = ps.

As characteristic expansions, q; and g, are —-obsessional,
so by Proposition 4.14 we have q; ~ p1 and g2 ~ p>. Moreover, by
Lemma 4.1, if g1 ~% g, then q; ~ g2. By symmetry of ~ (Lemma
4.12), we obtain:

pP1~4q1~4qz2~p2.

Lemma 4.12 allows us to compose bisimulations, giving us p1 ~ p2
(and p2 ~ Pl)

Since p, is a mia and p1 ~ p», then by Proposition 4.14 p; is a
—-obsessional expansion of p,, and there is a (unique) morphism
@: p1 — p2. Likewise, there exists ¢: p» — p1. But morphisms
from an expansion to a mia are unique (Lemma 3.42), so p oy = id),
and ¢ o ¢ = idy,, hence p; = p».

Going back again to the proof sketch for positional injectivity, we now
only need to prove that two characteristic expansions reaching the same
position are bisimilar.

4.2.3 Clones

In Section 4.1.2, we introduced characteristic expansions which, via duplica-
tions with well-chosen cardinalities, constrain the causal structure. More
precisely, if p is a mia and g € exp(p) is characteristic, one could look at a
set of duplicated Player moves in (g) of cardinality # and, decomposing
n = Yier 2!, one could deduce that the causal predecessors of the q;’s
are among the forks with cardinality 2’ for i € I. But that is not enough:
this does not tell us how to distribute the q]J.r ’s to the forks, and not all
the choices will work: while the q;.r ’s are copies, their respective causal
follow-ups might differ. So the idea is simple: imagine that the causal
follow-ups for the q]J.r ’s are already reconstructed. Then we may compare

4.2 Bisimulation Relations 75

Proof Sketch for Positional Injectivity:
Consider two total mia p1, p2 € Auge(A)
suchthat (p1) = (p2).Letq € exp,(p1)
be a characteristic expansion of p1, then
there exists g2 € exp,(p2) such that
@: (n1) = (g2)- Then:

(@) ¢: (q1) = (g2) implies g1 ~p g2
(we still need to prove this!),

(ii) which implies p1 = p2

(Lemma 4.5 and Proposition 4.15).

76

4 Positional Injectivity, for PCG and for HO

them using bisimulation, and replicate the same reasoning as above on
bisimulation equivalence classes.

So we are left with the task of leveraging bisimulation to define an
adequate equivalence relation on |g|. This leads to the notion of clones,
our last technical tool.

Clones - definitions

We want a relation a =¥ b that will allow a and b (and their follow-ups)
to change their pointers through some unspecified I'.

Definition 4.16 — Pointers-preserving context

Consider g, p € Aug,(A) with @: (g) = (p) and a context I'. We say
I' preserves pointers if for all a € dom(T'), p(just(a)) = just(T'(a)).

Definition 4.17 — Clone

Consider g, p € Aug,(A) with @: () = (p),and a € |q]|, b € |p|.

We say that a and b are clones through ¢, written a =% b, if there
is a pointer-preserving context I" such that a NI({) b.

As a =% b quantifies existentially over contexts, compositional properties
of clones are more challenging. Nevertheless, via a canonical form for
contexts, we show that = also enjoy equivalence properties.

Context Properties

First, we prove some properties of contexts. For any event a of an
augmentation g € Aug(A), we define Ta the set of descendants of 4, i.e.
Ta={a"|a<,a’}.

Lemma 4.18 — Matching contexts

Consider g, p € Aug,(A) with ¢: g = p. Consider a ~f b for some
a €|q|,b € |p| and a context I'.

Then for any a’ € Ta, there exists b’ € Tb such that a’ ~(er N b,
where

a:ao—Dq...—oqa’:an, b=bg—>p...—>pb'=bn,
and A is the context defined as

A ={(a;,b;)| 0< i < nandpol(a;) = -} .

Moreover, if a ~?, b for a context I'’, we also have a’ N?'u i b

By induction of the co-depth of a’.

We can now define minimal contexts.

4.2 Bisimulation Relations 77

Definition 4.19 — Minimal context

Consider q, p € Aug,(A), ¢: () = (p),a € |q],b € |p| witha ~f b
for some context I'. We define I'; ;, the minimal context for a ~? b
as the restriction of I" such that:

Ja’t € Ta,just(a’) = '
c € dom(T,p) ? T4, just(a’) = c (l)
I'(c) # ¢p(c) (ii)
for all ¢ € |g|, and symmetrically the mirror condition applies to
any d € |p|.

We can check that this indeed defines a context.

Lemma 4.20 — Minimal contexts are contexts

Consider g, p € Aug,(A), @: (7) = (p),a € |q|,b € |p| witha ~ b
for some contextI'.

Then T, , is a context and a ~? \ b.

Immediate by definition. First, any restriction of I' enables
a,b. Next, I is only needed for a’* € T4, inductively following
conditions (3) and (4) of Definition 4.7, so we only need to keep
¢ € dom(T') verifying condition (7). Finally, if I'(c) = ¢(c), then we
can safely remove (c, ¢(c)) from I': whenever ¢ is needed, we use
condition (4) instead of (3).

Moreover, we say I'; j is the minimal context because it is uniquely defined
for any bisimilar a, b.

Lemma 4.21 — Minimality and unicity of minimal contexts

Consider q,p € Aug(A) with ¢: (g) = (p). Consider a € |g|,
b € |p| and T, A two contexts such that a ~? band a ~(g b.

Then I';, = A, p. Moreover, I';, is the minimal (for inclusion)

context such that a ~f \ b.

First, we prove that 'y, = A .

Consider ¢ € dom(I';). Then by (i) there exists a’ € Ta such that
just(a’) = c. Since a ~? b, there exists a matching b’ € Tb such
that just(b) = I'(c) (Lemma 4.18). Moreover, by condition (ii), we
know I'(c) # ¢(c).If ¢ ¢ dom(A,), then by Lemma 4.18 and 4 ~Z) b
we have just(b’) = @(c), i.e. p(c) = I'z5(c), contradiction. So ¢ €
dom(A,), and by Lemma 4.18 and a ~K bwehavejust(b’) = A, 5(c),
ie. Fu,b(c) = Ag/b(c).

Symmetrically, for any ¢ € dom(A,), we have ¢ € dom(I'; ;) and
Aa,h(c) = Fa,h(c). Hence, 'y, = Agp.

We just proved that for any context A such that a ~(AP b, we have
Tap =Asp.Hencel'y p, € A, soT;), is minimal for inclusion.

78

4 Positional Injectivity, for PCG and for HO

This lemma allows us to write the minimal context for a, b without men-
tioning I'.

Clones as equivalence classes

A key notion in the proof of positional injectivity is the notion of clones,
a variation of bisimulation. Although the added constraint on contexts
makes transitivity more challenging, we can still prove a variation of

Lemma 4.9. We use the same notation as for the usual bisimulation: for

any a, b events of an augmentation ¢, a ~ b means a ~ b.
Lemma 4.22 — Transitivity of ~

Consider g, p, r in Aug,(A) with @: (q) = (p) and ¢: (g) = (p),
and a € |q|,b € |p|, c € |r| such thata ~? band b ~¥ c.

Then we also have a ~¥°? c.

Consider I and A the minimal contexts such that a ~l(ﬁ) b

and b ~X ¢ (unique by Lemma 4.21).

If cod(I') = dom(A), the result is immediate by Lemma 4.9: we get

a ~KZ? ¢ with, for any d € dom(A o I') = dom(T’),

P(@(ust(d))) = P(justIT'(d))) = just(A(I'(d)))

T

so A o T preserves pointers, and a ~*°T c.

Now, assume there exists d € cod(T') such that d ¢ dom(A). Since T
is minimal, there exists b’ € Tb such thatjust(b’) = d. By b ~$ cand

Lemma 4.18, there exists a matching ¢’ € T ¢ such that b’ ~KU A €

with A’ mapping negative moves between b and b’ to negative
moves between ¢ and ¢’. Since d € cod(I'), we donot have d >, b, so
d ¢ dom(A’). Hence, just(c’) = ¢(d) and ¢(d) ¢ cod(A). So we can
write

v
b~ gt payy ©

where A U {(d, ¢(d))} preserves pointers.
Likewise, for any d € dom(A) such that d ¢ cod(I'), we have I' U
{(¢p~1(d), d)} well-defined and pointer preserving, such that

¢
@~ o1y U

This allows us to define the following pointer-preserving contexts:

I’ =TU{(p}(d),d)| d € dom(A),d & cod(T)}
N = AU{(d,p(d))] d € cod(T),d ¢ dom(A)}.

Then a ~1(f), b and b ~K, ¢, so by Lemma 4.9, we have a ~K,Oo(?, c.

Moreover, A’ o I preserves pointers, so finally a ~¥°¢ c.

This allows us to prove equivalence properties for the clone relation.

4.2 Bisimulation Relations

Lemma 4.23 — Equivalence for ~

Consider q, p, r € Aug,(A) augmentations, with ¢: (g) = (p) and
Y: (p) = (r),and events a € |q|, b € |p|, ¢ € |r|. Then:
reflexivity: a ~° a,
transitivity: if a ~% band b ~¥ c, then a ~¥°% ¢,
symmetry: if a ~? b thenb ~? ' a.

Reflexivity. By reflexivity of ~ (Lemma 4.9), 2 ~% 4, which
implies a ~ a.
Transitivity. See Lemma 4.22.

Symmetry. Inmediate by symmetry of ~? (Lemma 4.9): if I pre-
serves pointers, so does I'"L.

Clones through id in characteristic expansions will be especially inter-
esting, because then we can partition equivalence classes of ~ into
successors of forks.

Forks and Clone Classes Cardinalities

Lemma 4.24 — Forks generates clones

Consider p € MIA(A) and g € exp,(p) a —-obsessional expansion.

Then, for all ai,a,

we have by ~ b,.

€ X € Fork(q), for all a; —; b and a; —; by,

If X = {init(g)}, then a; = a; = init(g) and the result is
immediate by determinism and reflexivity.

Otherwise, assume X # {init(7)} and a; # as.

First, let us prove that b; and b, are bisimilar. Since g is a —-
obsessional expansion of p, there exists a unique (by Lemma 3.42)
morphism ¢: g — p.

Recall Lemma 4.13. Writing

Li=Ty: [bil; = [p®))], fori=1,2,

we have:
bi ~r; @(bi) fori=1,2.

By —-linearity of p, we know that ¢(a1) = @(a2), so @(b1) = @(bz)
by determinism. Hence by Lemma 4.12, we have

b1 ~rstar, b2

Writing I' = I';! o T'y, it remains to check that I' preserves pointers.
Consider ¢ € dom(T') = [b1]q‘.lfc = ay, thenT'1(a1) = p(a1) = T2(a2)
by —-linearity of p. By courtesy and since a1, 4, € X € Fork(g), both
have the same pointer d = just(a1) = just(az) = pred(a;) = pred(az).
If ¢ # a1, then ¢ <; d, s0o ¢ € dom(T'); and I'1(c) = @(c) = I'2(c),
hence I'(c) = c. In both cases, I preserves pointers, so by = b;.

80 | 4 Positional Injectivity, for PCG and for HO

In particular, if a clone class includes a positive move, it also has all its
cousins triggered by the same fork — so clone classes may be partitioned
following forks.

Lemma 4.25 — Partition Lemma

Consider p € MIA(A) and g € exp, (p) a characteristic expansion.
Consider Y a clone class of positive events in |q|, with

By = Z 2! for I c N finite.

i€l
Then for all i € N, we have:

#X; =2,

i € Iiff AX; € Fork(q) such that
JaeX;,beYsta—;b.

Moreover, we can partition Y into:
Y=[HY
i€l

with foralli € I, #Y; = 2! and forall b € Y;, there is a unique a € X;
such thata —; b.

For any i € N, we write X; the fork of g of cardinality 20 if
it exists. Consider the set:

J={jeN| Xjexists, Ja € X;,b € Ysit.a —; b}.

Any b € Y is positive, and so the unique (by determinism) successor
of some negative event a. But a appears in some fork X € Fork(g),
and by Lemma 4.24, all events of X are predecessors of events of Y.
So, for any j €], the set of successors of events of X is Y] €Y, with
#Y; = §X; by determinism. Finally, we have:

v=Uy,
jeI

where the union is disjoint since g is forest-shaped. Therefore:

oY= S = S = .

j€l jel j€l

By uniqueness of the binary decomposition of §Y, we have I = J,
which concludes the proof by definition of J.

4.3 Total MIAs are Positionally Injective in PCG | 81

4.3 Total MIAs are Positionally Injective in PCG

We now prove the core of the injectivity argument: given two mias p1, p»
with characteristic expansions g1, g2 and @: (g1) = (42), we have

Claim 3: forallat € |q1|, a =% (p(a) The co-depth of a is the max-
imal length k of a causal chain
a=ay—vg ... g .
The idea of the proof is the following: we reason by induction on the
co-depth of a, using properties of bisimulations and Lemma 4.25, to prove
Claim 3. Then we deduce init(q1) ~¢ init(g2), hence g1 ~% g».

Proving Claim 3 requires some care, because cloning is defined via a
context and the successors of a might not share the same. Hence we start
by defining a canonical form for pointers-preserving contexts.

Lemma 4.26 — Minimal context for clones

Consider g € Aug,(A) and a, b € |q| such thata = b.

Then the minimal context for a, b is either empty or I': {c} = {d}.

Assume, seeking a contradiction, that the minimal context I
has at least two distinct elements ¢1, c; € dom(I'). Remark that since
a = b, there exists A a pointers-preserving context such that a ~5 b,
and since I' is a restriction of A (see Lemma 4.27), I also preserves
pointers.

Now, by condition (7) of Definition 4.19, c; <; a and c; <; a. But g
is forest shaped, so ¢4 <gq C20rCx <4 €. W.l.0.g., assume that it is
the former. Then by courtesy, just(c1) <; just(c2) as well, and since
c1 # cp, we have:

c1 < just(ca) (4.2)

For the same reason, I'(c1) <, I'(c2) or T'(c2) <4 T'(cy).

If it is the latter, this entails that just(I'(c2)) <, just(I'(c1)) by courtesy;
i.e. since I' preserves pointers, just(cz) <; just(c1). So just(c1) =
just(c2), and because c1, c2 <; a we have ¢; = ¢3, contradiction.

So, I'(c1) <4 T'(c2), and I'(c1) # I'(c2) by hypothesis. By courtesy,
this entails that:
[(c1) <4 just(T'(c2)) (4.3)

Moreover, I preserves pointers, so just(cz) = just(I'(c2)). Hence, (4.3)
rewrites to:
I'(c1) <4 just(c2) (4.4)

By forestiality of g, (4.2) and (4.4) implies that ¢; and I'(c;) are
comparable for <,. But they are negative and share the same justifier,
so they have the same antecedent by courtesy. This implies ¢; = I'(c1),
which contradicts condition (i7) of Definition 4.19.

Given clones with a context I', we can also extend I' in some ways.

82

4 Positional Injectivity, for PCG and for HO

Lemma 4.27 — Extending contexts for clones

Consider g, p € Aug,(A) two augmentations such that there exists
an isomorphism ¢: () = (p). Consider events a € |g|, b € |p|
and a pointing context I" such that 4 quo b.

Then for any c € |q| such that:

(i) ¢ ¢ dom(T) (iii) c¢Ta
(i0) @(c) gcodI) (iv) @(c) & TD

N
we have a TU{(c,p(c))} 2

Moreover, for any ¢ € |g| and d € |p| such that

(i) ¢ ¢ dom(T) (iii) c¢Ta (v) Va’ € Ta,just(a’) # ¢
(ii) d ¢ cod(T) (iv) d¢Tb (vi) Vb’ € Tb,just(t’) #d
b.

then we also have a ~I(€U ()

Straightforward by induction. Either c is never used in the
bisimulation (i.e. no one in Ta points to c), and we can pair it with
any d which is not used either and add (¢, d) to I (as long as we
still have (I' U {(c, d)}) + (a, b)); or it is used with condition (4) of
Definition 4.7 and we can add (c, ¢(c)) to I' and use condition (3)
instead.

Both those lemmas will help us constructing matching contexts in order
to prove Claim 3. Before moving on to the proof, we need a last lemma
on co-depth of bisimilar events.

Lemma 4.28 — Bisimilar events have the same co-depth

Consider g, p € Aug,(A) two augmentations such that there exists
an isomorphism ¢: () = (p). Consider events a € |g|, b € |p|
and a pointing context I" such that a ~? b.

Then a and b have the same co-depth.

Straightforward by induction.

We now state our main auxiliary lemma:

Lemma 4.29 - Lifing clone classes

Consider q,p € Aug,(A) with ¢: (q) = (p). Consider a* € |q|
such that succ(a) = Uje; X;, where I € N and fori € I,

Xi ={bi1,..., b} € Fork(q).

Then we have a =% ¢(a), provided the two conditions hold:

if bi,j —>q Cij, then (P(bi,j) —p d,',j and Ci,j =~ di,]‘ , (4.5)
if (p(b,‘,]‘) —p di,jr then bi,j —>q Cij and Ci,j =? di,]' . (4.6)

4.3 Total MIAs are Positionally Injective in PCG

First, remark that:

dq(a) = dp(¢p(a)), (4.7)
p(just(a)) = just(p(a)) . (4.8)

Foranyi € land1< j <2, wehaveb;; ~? ¢(b;). Indeed:

» if b; ; has no successor, then by 4.6 neither does ¢(b; ;), and
bij ~? @(b;);
» otherwise, b; j has a unique (by determinism) successor ¢; ;,
and by 4.5 we have (p(bi,]‘) —p di,]‘ and Cij ~¢ dj,]‘.
In both cases, we obtain b;; ¥ ¢(b; ;). Let I'; ; be the minimal
context for b; ; ¢ @(b; ;).
We wish to take the union of all T; ; as the context for a and ¢(a),
but this is only possible if they are “compatible”: we must ensure
thatforalle € |g],i,ke[[1<j< 2" and 1 < I < 2, if there exists
cl’j € Tb;jand c; , € Tbk,; having both e has a justifiter, then their
matching d;,]. € Te(b;,;) and d;{/l € T@(bk,1) also have the same
justifier.
This can only be a problem if e € dom(I'; ;) or e € dom(I't), as
otherwise both justifiers for d’ and d | are @(e). By Lemma 4.26,

for all i, j, the context I'; J has e1ther one or zero element. If all T'; i
are empty, we can directly lift the clone relation to a4 and ¢(a).

Otherwise, consider i, j such that:
Tij:{eij} ={fi}
By Definition 4.19, we have:
eij € [bijl; and fij € [p(bij)],

Could we have f; j = ¢(b; j)? Since I'; j preseves pointers, ¢; j and
fi,j have the same justifier through ¢; but the only e € [b; ;]; such
that ¢(just(e)) = just(¢(b; ;)) is b; j, which contradicts minimality of
['; j. Hence we have:

fij € loa)],

Now, assume that for some k, [, there exists ckl € Tbk, such
that just(c l) = e;j. Since by; =¥ @(b,), there is a matching
| € T(p(bk 1) such that:

pust(es) = just(ust(d,) *9)
For b; ; ~?M @(b; ;) and by ~ka1 @(bx,1) to be compatible, we need

]USt(d];/l) = fij-
Since I'; ; preserves pointers, we have

p(just(e; ;) = just(fi;) - (4.10)

83

84 | 4 Positional Injectivity, for PCG and for HO

Combining Equations 4.9 and 4.10, we obtain
just(just(d;(,l)) = just(fi ;). (4.11)

where just(d,’(,l) € [d,’(l]; and fi; € [p(a)],. But [p(a)], C [d]/(l];
which isa fully ordered set for <, sojust(d; ;) and f; ; are comparable
for <;,. Moreover, they are negative, so by courtesy

just(just(d]’(,l)) = just(f; ;) iff pred(just(d;(,l)) = pred(fi ;) .

Hence, we have pred(just(d; ,)) = pred(f; ;). Since just(d;) and f; ;
are comparable, we obtain just(d; ,) = fi ;.

So all contexts I'; j are compatible, and we can define:
r={JTi;.
ij
Via Lemma 4.27, it follows that:
Vi,j, bij~% @(bi;)
1,7, i,j ~r PWij),

which entails that a ~I(’f @(a) by two steps of the bisimulation game.
Since all I'; ;’s preserve pointers, so does I'; hence a =¥ ¢(a).

We are finally able to prove Claim 3 the core of the injectivity argument.

Lemma 4.30 — Key lemma

Consider p1, p2 € MIA(A) and g1 € exp,(p1), g2 € exp,(p2) two
characteristic expansions with ¢: (1) = (72).

Then for all a* € |g1|, we have a =? @(a).

Recall that the co-depth of a € |q;| is the maximal length k of
achaina = a; —g; ... —+4 ax. We show by induction on k the two
symmetric properties:

(Px) foralla® € |q1| of co-depth k’ < k, we have a =% ¢(a),
(P;) foralla® € |qa| of co-depth k’ < k, we have a N o~ Ya).

(Po) First, consider a* € |q1| maximal for <,,. By courtesy, a* is
also maximal for <), so @(a) is maximal is g> for both <¢;,) and
<g- Since @ also preserves the arena image, we immediately have
a ~¥ @(a) with the empty context, so a =¥ ¢(a).

(P;) By the same reasoning, for any a* € | 2| maximal for <,,, we
have a ~*~ @~ 1(a).

4.3 Total MIAs are Positionally Injective in PCG | 85

(Pk+2) Now, assuming (Px)and (P}), consider a™ € |q1| of co-depth

k + 2. Then the successors of a partition as: Since —», alternates polarities
and augmentations are +-covered, all
su CC(a) _ U X positive events have even co-depths, so

= i

for the induction we go from (Py) to

i€l
(P+2) (same for (P}) and (P} ,))-

with foralli € I,
X! ={big,..., by} € Fork(q1).

Since configuration isomorphisms preserve causal links from posi-
tive to negative moves, the successors of ¢(a) are:

succ(p(a)) = |+) p(X;) withVi € I, X; € Fork(qa) .

iel
Now, foranyiel,1<j< 2! we claim:
if bi,j =gy Cic, then qo(bi,j) —>q, d,',]' and Cij ~? di,j . (4.12)

Indeed, consider Y; ; the clone equivalence class of ¢; ; in ;. Since
the clone relation preserves co-depth, it follows from the induction
hypotheses (Px) and P;) and compositional properties of clones
(Lemma 4.23) that ¢(Y; ;) is a clone class. Then by the partition
lemma (4.25), §Y; ; has 2’ in its binary decomposition — and as ¢
preserves forks, so does #¢(Y; ;). So by Lemma 4.25, thereis ¢ (b; ;) €
(p(X,) and d,',]' € (p(YI,]) such that (p(bi,]‘) g, di,]'. Since both (p(Ci,]')
and d; ; are in ¢(Y; ;), we have ¢(c; ;) ~ d; ;. Moreover, we have
cij =¥ ¢(ci,) by induction hypothesis (Px). By compositional
properties of clones (Lemma 4.23), we obtain c;; ~ d; ;, which
concludes the proof of Equation 4.12. Likewise, the mirror property
of 412 also holds. Having verified all hypotheses for the lifting
lemma (4.29), we can now apply it to get a =% @(a).

(P,,,) The reasonning is the same as for Py.,.

Conclusion. For a* € |q1] of any co-depth, a =¥ ¢(a).

This lemma gives us the last missing piece to prove positional injectivity:
Theorem 4.31 — Positional Injectivity in PCG
Consider two total p1, po» € MIA(A). Then:

prEp2e pid = (p2) -
The implication = is immediate by definition.

For the reverse implication, assume (p1)) = (p2)). Consider a char-
acteristic expansion q; € exp,(p1). By hypothesis, there exists
g2 € exp,(p2) with @: (g1) = (42). By Lemma 4.5, g, also is a
characteristic expansion. If both ¢;’s are empty, there is nothing
to prove: we directly have p; = p, the empty augmentation on A.
Otherwise, g7 has an initial event init(q1), and since ¢ preserves

86

4 Positional Injectivity, for PCG and for HO

minimality,

p(init(q1)) = init(q2)
We write a; = init(q;). Augmentations are negative, so both 4;s are
negative. By determinism, they have unique successors

bi =succ(a;) and b, =succ(ay).

For i = 1,2, b; is the only event with its co-depth since all other
events except a; are below it. By Lemma 4.28, it means X; the clone
class of b; is a singleton X; = {b;}. But ¢ preserves clone classes
by Lemma 4.30, so ¢(X1) = {@(b1)} also is a clone class. By the
partition lemma (4.25), we obtain ¢(b1) = by. But by =% ¢(b1) by
Lemma 4.30, so we get:

bl z(” b2 .

So by ~% by (with the emply context since for i = 1,2, the only event
above b; is a;, and we already have a; = ¢(a1)). Therefore,

aq ~% an ie. q1 ~% qz .

By Proposition 4.15, we finally obtain p; = p,.

4.4 Positional Injectivity in HO

We now come back to our initial Question 4 from Chapter 3:

Question: are innocent strategies in HO games positionally injective?

4.4.1 Total Finite Innocent Strategies are Positionally
Injective in HO

Using the isomorphisms defined in the previous chapter between PCG
and HO, we can easily translate Theorem 4.31 to HO strategies.

Theorem 4.32 — Positional Injectivity in HO

Consider two total, finite innocent strategies o, T on an arena A.
Then:
c=1 (a) = (7).

The first implication = is immediate.

For the reverse implication, assume (o)) = (z)).But (o)) = (MIA(c))
by Proposition 3.48, so by Theorem 4.31 we obtain MIA(c) = MIA(T).
By Theorem 3.40, this implies 0 = 7.

4.4 Positional Injectivity in HO | 87

4.4.2 Beyond Total Finite Strategies

Is it possible to expand this result to partial or infinite strategies?

Our proof method requires totality to ensure that being a characteristic
expansion is a property of the position of an augmentation, and finiteness
to be able to reason co-inductively on characteristic expansions.

We do not know if positional injectivity still holds for total infinite
strategies, or for partial finite strategies; however we do know that partial
infinite strategies in general are not positionally injective.

Consider the infinitary terms
fra—=a—-a+N,L,LR:«a
recursively defined as
hi=fThR, L=fLT, L=fL1, R=fL1R,
in an infinitary simply-typed A-calculus with divergence L.

Now, consider My = Af. T; and M, = Af. T, and their interpretation as
mii’s on the arena [(@« — a — a) — a]pce. Figure 4.8 shows the arena,
using indices to help distinguish between the different moves. Figures
4.9 and 4.10 represent the respective interpretations p; and p, of M; and
M, with loops indicating regular infinite trees. Clearly M; and M, are
different, and so are their interpretation p; and p;.

We consider positions reached by well-opened plays — or equivalently, by
(iso-)expansions of the isogmentations presented in Figures 4.9 and 4.10.
Ignoring the initial q,, a position is a multiset of bricks as in Figure 4.11,
with i € N occurrences of q, and j € N occurrences of q, . A brick with
i = j = 0is a leaf. The position is balanced if it has as many Opponent as
Player moves.

Now, any balanced position can be realized in p; by first placing bricks
with occurrences of both ¢, and q, greedily alongside the spine — shown
in red in Figures 4.9 and 4.10. At each step, we continue from only one
of the copies opened, leaving others dangling. If this gets stuck, apart
from leaves we are left with only ¢, ’s, or only s, and in any case there
is always a matching non-spine infinite branch available. Finally, leaves
can always be placed as their number matches that of trailing negative
moves by the balanced hypothesis. The same goes for p,: any balanced
position can be reached with an iso-expansion of p;.

Moreover, all positions reached by expansions of p; or of p; are balanced,
by determinism and +-coveredness.

We obtain that the positions of p; and the positions of p, both are exactly
the balanced positions in [(&« — a — a) — «a]. Hence,

(A7 Tlwob = (I To] oD,

and positional injectivity fails.

(v — a2 — az) — ag

a3

I T

Figure 4.8: [(a« — a — a) — aJpce.

L9
N

q9;

C l_‘f

9

Figure 4.9: MII(JA f4%% Ti] o)

Figure 4.10: MII(JA f*~% % T po)

Figure 4.11: Bricks

88 | 4 Positional Injectivity, for PCG and for HO

4.5 Conclusion

Innocent strategies in HO games are not positional, but we show that total
finite innocent strategies enjoy positional injectivity — and likewise, total
finite mia’s in PCG are positionally injective. However, the property fails
in general, for partial infinite innocent strategies.

This result may be useful in the game semantics toolbox: proving two
(total, finite) innocent strategies equal now requires only to compare their
positions, which can be easier to handle than plays with pointers.

ComproOsSITION AND RESOURCE CALCULUS
SEMANTICS

90

[5]: Blondeau-Patissier, Clairambault,
and Auclair (2023), ‘Strategies as Re-
source Terms, and Their Categorical Se-
mantics’

[3]: Blondeau-Patissier (2024), ‘Resource
Categories from Differential Categories’

In this part, we introduce the dynamical aspect of Pointer Concurrent Games:
we define the composition of augmentations and expose the categorical structure
of PCG. We also study the interpretation of resource calculus in PCG.

In Chapter 5, we start by constructing a bijection between isogmentations and
normal resource terms.

In Chapter 6, we define the composition of augmentations, and present PCG
as a category. We also show how this composition coincides with the one from
HO games, following our previous isomorphism between PCG and HO.

In Chapter 7, we introduce resource categories, a new categorical structure
that is relevant to obtain a model of the resource calculus. We prove that there is a
sound interpretation of resource terms in a resource category. We also investigate
the links with differential categories.

In Chapter 8, we finally show that PCG indeed forms a resource category,
completing the previous isomorphism between resource calculus and games: the
correspondence between normal resource terms and isogmentations refines into
a denotational interpretation, invariant under reduction, of resource terms as
“strategies” — weighted sums of isogmentations.

Most of this section is adapted from the articles [5] and [3].

Augmentations are Normal
Resource Terms

As stated in Chapter 1, resource terms and plays in HO games are similar:
Tsukada and Ong [40] showed that certain normal and 7-long resource
terms correspond bijectively to plays in HO games, up to Opponent’s
scheduling of the independent explorations of separate branches of the term. This
scheduling is formalized by Melliés” homotopy equivalence on plays (see
Chapter 3).

Our game model PCG relies on augmentations, which correspond to
HO plays quotiented by this relation; so it is natural to investigate the
relation between augmentations and resource terms. We could try and
compose the bijections from A to HO and from HO to PCG, but the
correspondence between A and PCG can actually be studied on its own,
in a more direct way than the correspondence presented in [40]. In this
chapter, we give the explicit bijection between (normal, n-long) resource
terms and isogmentations (isomorphism classes of augmentations).

First, we define an extensional typed resource calculus (Section 5.1), a variant
of the usual typed resource calculus with typing rules ensuring that
normal terms are in 77-long form. We give a few additional constructions
for PCG in Section 5.2, before constructing the bijection between normal
terms and isogmentations in Section 5.3.

5.1 Extensional simply-typed resource calculus

5.1.1 Typing rules

We start by defining an extensional simply-typed resource calculus. In-
deed, the existing isomorphism from [40] is between quotiented plays
and normal, n-long resource terms, because game semantics is inherently
extensional. Hence, we set typing rules which ensure normal terms are
already in an 7-long form.

Recall the usual grammar of types:
AB,C,...:=a|A—> B

with a single base type a. If A= (Aq,...,Ay,), we write:

def

Then any type B can be written uniquely as B = A a.

We fix a type for each variable, so that each type has infinitely many
variables, and write x : A when A is the type of x. A typing context I' is
a finite set of typed variables, written as an enumeration:

FZX1 2A1,...,Xn :An

and abbreviated as X : A.

5.1

5.2

5.3
5.4

Extensional simply-typed

resource calculus 91
A few additional PCG

constructions 94
The isomorphism 95
Conclusion 102

[40]: Tsukada and Ong (2016), ‘Plays as
Resource Terms via Non-idempotent In-
tersection Types’

Terms are given by the fol-

lowing grammar (see Definition 1.14):

oi=x|Axs | st

,t
JE, ,Sn]-

©w ®

Loon= s,

92 | 5 Augmentations are Normal Resource Terms

I'x:Avrrns:B I'trns:A—B Fl—Bgf:A
(abs) — (app)
I'ttmAxs:A— B I'tinst:B
F,x:f_l)—mrl— ?A)
— = (var)
I''x:A-armxt:a
I'brnsi: A Thnsy i A rl-ngllAl FI—ngnZAn
(bag) — — (seq)
1—‘"Bg [51/---1511]:A I'r <S1,...,Sn>Z<A1,...,An>

Figure 5.1: Typing rules for the simply-typed 1-long resource calculus

We may then also write:
def

AX.5s = Axq....Ax,.5.

We call resource sequence any sequence 5 € S[A] = Jls(A)". Given
a term s and a resource sequence f= (t1,...,t), we also define the
application:

Finally, we give the type system in Figure 5.1. There are three different
kind of judgements:

» 'ty s : A for terms,
» I' by 5 : A for bags,
» T+, S : A for sequences.

We request bags to be typed uniformly (all the elements of a bag share
the same type) and variables to be fully applied.

For X € {Tm, Bg, Sq}, we write X(I'; A) for the set of expressions s such
thatI' kx s : A. We extend the type system to finite sums of terms with:

l"I—XZsi:A ifT +xs;:Aforeachiel.

iel

We write ZX(T'; A) for Z[X(T; A)].

5.1.2 Reduction and substitution

We extend resource substitution to sequences by setting:

- - T def - T - 7T
_ <Slr-~-/sl’l><t/x> = Z <Sl<t1/x>r"-/sﬂ<t7’l/x>>'
For a bag ¢, the sum indexed Faafpeosky
over f < f1 #--- I, is the sum over all
n-partitionings of f (see subsection 1.3.1). This implies:

(s) (E/x) = D (s(h/x)) (i(Ea/x)),

E<IE1*E2

which generalizes the application case of Definition 1.15.

5.1 Extensional simply-typed resource calculus | 93

This type system enjoys subject reduction with respect to ~». As is usual,
the key result for subject reduction is a substitution lemma.

Lemma 5.1 — Substitution

If s € X(T, x : B; A) and t € Bg(I'; B) then s(t/x) € ZX(I; A).

By mutual induction on the three syntactic cases.

Lemma 5.2 — Subject reduction
IfSe IX([T;A)and S ~ S’ then S’ € X(T; A).

We first treat the case of S = s € X(I'; A) by induction on
the definition of the reduction s ~» S’: the case of a redex is by the
substitution lemma, and the other cases follow by contextuality. The
extension to sums is straightforward.

5.1.3 Normalisation

For X € {Tm, Bg, Sq}, we write Xp(I'; A) for the elements of X(I'; A) that
are in normal form.

Lemma 5.3 — Typing normal forms

We have s € Xps(I'; A) if and only if T Fx s : A is derivable without
using the application rule (app).

Given a derivation tree for I +x s : A using rule (app) at
least once, consider a minimal subderivation with this property:
it must have an instance of (app) at its root, and its premises are
derived without (app). The left premise must thus be derived by
(abs): we have ruled out (app), and the conclusion of (var) is never
an arrow type. We thus obtain a redex.

This property ensures that all normal resource terms are n-long.
Corollary 5.4
Consider s € Tmy(I'; A — B), then we can write:

. x:A,
s = Ax.t with
t € Tmye(T, x : A; B).

For s € Tmp(T; &), we can write:

o :(_f er,
s=yu with z —ae
ue nf(r;c)'

~ is the resource reduction,
defined in Figure 1.12.

The strong normalization result
from Chapter 1 (Theorem 1.16) still holds
for this typed setting.

A normal resource term s of
type A — a is n-long if it has the shape

Ax1... Ax 2.t

14|

with t a normal term of type a (which
must then be a fully applied variable).

94 | 5 Augmentations are Normal Resource Terms

and

Figure 5.2: Arena A and arena B

_ by
1
3
+ +
& b;
Figure 5.3: Arena A® B
ot b
1
= s
& b
Figure 5.4: Arena A = B
at by
1
- +
a, b3

Figure 5.5: Arena A + B

5.2 A few additional PCG constructions

Before detailing the isomorphism between PCG and A, we need a few
additional constructions on arenas and configurations.

5.2.1 Construction on arenas - HomGame

In HO games, the categorical structure is obtained via the arrow construc-
tor: given two arenas A and B, morphisms from A to B are strategies on
the arena A = B. However A = B is only defined for B well-opened —
otherwise, we lose the tree structure. This arrow construction is needed
because strategies can have multiple initial moves: in a non well-opened
play, we need the information given by pointers to match moves in A
with initial moves in B, and we have to follow pointers in the hiding
phase when composing two strategies.

In PCG however, the causal information alone is enough to reconstruct
the causal order, and pointers to the initial moves are no longer needed,
meaning the composition will be slightly simpler. Hence we introduce
the hom construction A + B, which is very alike A = B except we do not
add links between A and B.

Of course, this “simplification” implies some more work when going
from PCG to HO games, because we now need to take into account the
slightly different categorical structure.

Definition 5.5 — HomGame
Consider arenas A; and A;. Then A; + A; is the arena defined with:

IAF A A+ (A,
(i,a) Sara, (j,b) & (i=j)and (a < b),
pOIAlb—AZ((lf a) = - pola, (a),
P0|A1+A2((2/ a)) = pola,(a) .

Then A; + Ay is clearly an arena. Remark that if A; and A, are both
negative, then A; + A is not (because of the minimal events from Aq,
which are now positive).

5.2.2 Constructions on configurations
The construction A; ® A, can be extended to configurations.
Definition 5.6 — Product of configurations

Consider arenas Aj, Ay and configurations x; € Conf(A;) and
Xo € Conf(Ap).

Then x1 ® x; is the configuration on A; ® A, defined with:
[x1®x2| = [x1] +|xa

(i,a) <xi®x; (]/ by & (=]) and (a <x; b)
Inex((i,a)) = (i,dx(a)).

5.3 The isomorphism

Remark that again, this construction extends to the n-ary product in the
obvious way.

Likewise, the construction A; + A can be extended to configurations.
Definition 5.7 — Configuration x; F x7

Consider arenas Aj, Ay and configurations x; € Conf(A;) and
X € Conf(Ap).

Then x1 F x; is the configuration on A; A, defined with:
d
lx1 ka2l = x| +[x2

(i,a) Sx1x, (j,b) & (i=j)and (a <y, D)
axll-xz((i/ Cl)) = (l/ ax,-(”)) .

One can easily check that x1 + x, € Conf(A; F Ap). Again, remark that
X1 F Xp is no longer negative if x1, x, are negative. Remark that here,
both constructions ® and + are almost identical: the only difference is the
destination arena, where A} ® A; preserves polarities of both A; and A,
while A; + A, inverses polarities for the events occurring in A;.

Both ® and + clearly preserve isomorphisms.
Lemma 5.8 — ® and | preserve isomorphisms

Consider arenas A1, A; and configurations x;, y; € Conf(A;) with
x; = y; fori =1,2. Then,

X1® X =11 ® Y and X1FEX2 Z Y1 kYo,
Fixing the configuration isomorphisms
@it Xi 2 Y fori=1,2,
we construct

e1+@2 o |xi| + x| = |yl +]yl
(i,e) = (i, ile))

which is a configuration isomorphism for both constructions.

5.3 The isomorphism

Now we can recast Tsukada and Ong’s correspondence as a bijection
between normal resource terms in this extensional setting and isog-
mentations. We first show how the structure of each syntactic kind
is reflected by isogmentations of the appropriate type: in particular,
terms will be mapped to pointed isogmentations, and bags to general

isogmentations. .
(negative) move.

For any tuple of arenas A= (A1, ...,An), we write:

A=0%A =>...>A, 20 and A*EA®...0A,.

95

o is the arena with a single

96 | 5 Augmentations are Normal Resource Terms

FFBg§1:A1 FFng;l:Ay,

Theq (81,..,8n) 1 (A1,..., An)

(seq)

An augmentation g is:

> forestial: both (|q|,<¢;) and
(lql, <4) are finite forests;

» negative: if 2 is minimal for <,
then pol(a) = —.

5.3.1 Types and contexts

We start by giving an interpretation for types:

def

[a] = o

KA1 ..., A)] E [A]® - ® [A4]
[A — B]

def

= [Al = [B]

For contexts, we set [[] £ Qx:a)er [A].

5.3.2 Resource sequences

To reflect the syntactic formation rule for sequences, we show that any
isogmentation on an arena G F A; ® ... ® A, can be decomposed in a
tuple of isogmentations on the G + A;’s — and reciprocally.

Definition 5.9 — Tupling of augmentations

Consider negative arenas G and A= (A1,...,A,); and augmenta-
tions q; € Aug(G + A;) for1 < i < n.

Weset§=(qi|1<i<n)ag € Aug(GF 3\®) with

def

L di,e) = (1,9) if 95,(e) = (1,9),
FI= 2l {aqa,e) 5 2,G,8) ifdye) = (2,a),

with the two orders <i and < @) inherited.

It is immediate that this construction preserves isomorphisms, so that it
extends to isogmentations.

Proposition 5.10 — Tuplings of isogmentations

The previous construction on augmentations induces a bijection
i -
(=, e = isog : I—[Isog(G + A;) = Isog(G + A®).
i=1

Injective. As an isomorphism must preserve — and display
maps, any isomorphism

(28 <QI I i€ I)Aug = (Pz | i€ I>Aug
decomposes uniquely into a sequence of ¢;: q; = p;, as required.

Surjective. Consider g € Aug(G F A®). By forestiality, any a € |g| has
a unique minimal antecedent, sent by the display map (via negativity)
to one of the A;’s — we say that a is above A;. Defining accordingly
gi as g restricted to the events above A;, we easily construct an
isomorphism q = (g; | 1 < i < n)a,g as required.

5.3 The isomorphism | 97

5.3.3 Resource bags

The next step is to reflect the typing rule for bags, by showing that
isogmentations can be seen as bags of pointed isogmentations.

Definition 5.11 — Bag of augmentations

Consider negative arenas G and A, and 41, g2 € Aug(G F A).
We set g1 * g2 € Aug(G + A) with:

> events |q1 * q2| =[q1| + 72|,
» display map dy,.q,(i,a) = dy,(a),
» the two orders <g,.4, and < (4,.4,) inherited.

This generalizes to an n-ary operation ITag(—) in the obvious way, which
preserves isomorphisms. The operation induced on isogmentations,
denoted by ITisoq(—), is associative and admits as neutral element the
empty isogmentation 0 € Isog(G + A) with (a unique representative
0 € Aug(G + A) with) no event.

Proposition 5.12 — Bags and pointedness

The previous construction on augmentations induces a bijection
Misog(—): M (Isoge(G + A)) = Isog(G + A).

Injective. Consider q1,...,qu,P1,---,Pm € 1s0g(G + A).
Because the ¢;’s and p;’s are pointed and isomorphisms preserve
the forest structure, an isomorphism @: g1 *---* g, = pr*---*py
forces m = n and induces a permutation 7t on n with a family of
isomorphisms @;: g; = pr;) for1l < i < n.Thisimplies:

H|Sog[ml1Si§1’l]=n|sog[ﬁllﬁi$1’l].

Surjective. As any q € Aug(G F A) is finite, it has a finite set I of
initial moves. As q is forestial, any a € |q| is above exactly one initial
move. For i € I, we write q; € Aug,(G F A) the restriction of g above
i;then g = g1 *--- * g, as required.

5.3.4 Currying

T,x:Avrrns:B
For the typing rule for abstractions, we need a bijection between aug- Trrs ASB @

mentations of G® A + B and augmentations of G + A = B. These two
arenas are almost identical; the events are the same (up to the tags), but
G + A = B adds links between events of A and events of B. Thankfully,
given an augmentation q € Aug(G ® A + B), the forestial structure of g
ensures that these links can be uniquely constructed when turning g into
an augmentation of G+ A = B.

98 | 5 Augmentations are Normal Resource Terms

If dz(a) = (1,(2,2)), then
9, (init(a)) = (2, b) by negativity of g.

-

F,x:zzl>—>a|— A

— (var)
I''x:A->armxt:a

o0 is the arena with exactly
one negative move, written

Lemma 5.13 — Unique initial ancestor

Consider g € Aug(A + B). For every a € |q|, there exists a unique
b € ming, (q) such that b <, a.

This event b is called the initial ancestor of 4, denoted by init(a).

<4 is a finitary forest.

Definition 5.14 — Currying of augmentation
Consider negative arenas G, A and B. We have a bijection

AR L Aug(G® A+ B) = Aug(G - A = B)

leaving the augmentation unchanged except for the display map,
which is reassigned following:

Iagp@ = (1,b) if d4(a) = (1, (1,b))
(@) = (2,(2,b) if dg(a) = (2,b)
Ing@) = (2,1, 0b,c) ifdy(a)=(1,(2¢)

and dy(init(a)) = (2, b);

and for the static order, which is likewise completed with static
links between events in A and B:

a’ <@gy 4 iff (11' < a)
or (d4(a) = (1,(2,a)) and a’ = init(a)) .

Since isomorphisms of augmentations are order-isomorphisms and pre-
serve display maps, the definition of this bijection is obviously compatible
with isomorphisms. Moreover, the causal order is unchanged, so in par-
ticular it preserves well-openedness.

Proposition 5.15 — Currying of isogmentations

The previous bijection defined on augmentations induces bijections:

A 1s0g(T ® A+ B) = Isog(T + A = B)

AL - 150g,(T® A + B) = Isog, (I - A = B)

5.3.5 Head occurrence

By Lemma 5.3, the only remaining case for typed normal forms is (var).

Consider G = A1 ® ... ® A;, where each A; is a negative arena of the
shape A; = B; = o = BY = o with B; = (B;1,...,Bj,,). Given an

- ®
augmentation g € Aug(G + B;), we construct the i-lifting of g:

0;(9) € Aug,(G F 0).

5.3 The isomorphism | 99

Intuitively, 0O;(g) is the augmentation which:

» starts by q the initial Opponent move of G o,

» plays q' the initial move from A; (which is negative in A; by
negativity, thus positive in G + 0),

» then proceeds as g: writing @, ..., 1, the minimal moves of g,
they must be mapped to initial events in G + I§,'®, hence to initial
events of I§,’® by negativity of g; so they can be played in the i-th
component of G.

We obtain a pointed augmentation on G + o, depicted in Figure 5.6.

>®
Al®...(Bi =0)...9A,Fo0
More formally:

Definition 5.16 — i-lifting of an augmentation

Consider G = A1 ® ... ® A,, where each A; is a negative arena of
the shape A; =B; = 0 = B? = owithB; =(Bj1,...,Bip)-

->®
Consider also an augmentation g € Aug(G + B;). Figure 5.6: 0;(q).
The i-lifting of g, written 0;(q) € Aug,(G F 0), is defined with:

def

» events |0;(q)| = |q| W{o, ®},
» static order <(g,(q) the least partial order containing:

(La) <@@y b)) ifaggbd,
(21 69) SlIIZIi(q)]] (1/ ﬂ) if aq(”) = (21 b)/

» causality order <p,(;) the order <, prefixed with© — &, i.e.
foralla <, b €|g|and e € {®, 0},

(1,a) <gyq) (1,b); (2,8) <gyq) (1,a); (2,0) <gyq) (2,9),
» display map dg,(4) the map given by:

def Recall that q is the only event of o.
aDi(q)((Z' o) = (249, We keep the isomorphism A; = é? =0
aD,‘(q)((zr) (1,Gi,(2,9)), implicit whenever we write moves in A;,
aD‘(q)((lr 1)) (1,a) if &q(a) =(1,a), so that we can consider (i, (2, q)) € |G|,
&Di(q)((lz b))

' ' and (i, (1,b)) € |G| for any b € |B?|.
1, (i, (1,b))) if dy(b) = (2,b).

def

def

def

This construction defines an augmentation on G + o, with a unique
initial event (2, ©). It again preserves isomorphisms, thus extending to
isogmentations.

Proposition 5.17 — Lifting of isogmentations

The previous construction on augmentations induces a bijection

O-(=):{1,...,n} x > Isog(G + BY) = Isog,(G I 0).

1<i<n

Injective. Given isomorphic 0;(q") and 0O;(p’), we obviously
have i = j since isomorphisms of augmentations preserve display
maps; and the isomorphism decomposes into q” = p’ as required.

100 | 5 Augmentations are Normal Resource Terms

IT bry Axis i A= Bl = APy sy (T ¥ 0 A b s 2 Bllvn)
IT ki xErallm £ oi(IT Fe, £ Alle)

IT Feg [S1,---,5n] : Allgg = Misog[IT i si Al [1< i< n]

IT koo GreeBa) s Alls = (T kg 512 Allsg | 11 < 71 ieog

Figure 5.7: Isomorphism for normal forms of the resource calculus

Surjective. Any q € Isog,(G F 0) has a unique initial move, which is
negative hence cannot be maximal by +-covered. By determinism, there
is a unique subsequent Player move, displayed to the initial move
of some A;. The subsequent moves directly inform g’ € Aug(A E’;;@)
such that g = 0;(g").

5.3.6 The isomorphism

Putting together the above results, we may now deduce:

Theorem 5.18 — Bijection (for typed resource calculus)

For I' a context and A a type, there are bijections:

| =1lltm : Tmu(;A)
Il =llgg : Bgnf(r/'é)
=1 : nf(L; A)

1s0g.(IT] + [A])
isog([T] + [A])
Isog([I'] + [A]) -

IR

IR

The three functions are defined by mutual induction using
Propositions 5.10, 5.12, 5.15 and 5.17, as in Figure 5.7 (where the
index i for the head variable case is the index of (x : A— a)inT).

Injectivity. Directly by induction on the syntax, using the injectivity
of each construction.

Surjectivity. By induction on the size (i.e. the number of events) of
augmentations, the syntactic kind (considering Tm < Bg < Sg), and
also the type A in the Tm case:

» the decomposition provided by Proposition 5.17 yields aug-
mentations of strictly smaller size (we remove the two initial
moves);

» the bijection of Proposition 5.15 preserves the size of augmen-
tations and stays in the kind Tm, but yields a smaller output
type;

» the remaining two decompositions do not increase the size
and yield a lower kind.

Hence we have an explicit bijection || — ||+ between normal resource
terms and isogmentations of PCG.

Consider the following sequent:

x:armAyy v x][]l: (@ > (@a—>a)—a)—a

with the typing derivation (setting' :==x: a, y : @ = (@ = a) = a):

%2 (var) I —— (var)

Frm Xt Fm Xt (bag) - (bag)
Iigg [x,x]: FI—Bg[]:oz—wz(:

se

R) I

(var)

x:a,y:a—-(a—a)=armylxx][]:a

(abs)

x:armAyy[x,x][]l:(@a—=>(@a—>a)—-a)—>a

We construct its interpretation step-by-step.

Typing rule (var) with a head variable of type @. Since x is applied to
an empty sequence, we are in a special case of i-lifting:

0® 0= (0=0=o0 F 0

||F Frm X : OC“Tm =
qt (/ /

Typing rules (bag). For the empty bag, we simply have:
IIT Fag []: @ = allgg =0 € Isog([I'] F 0o = o).
For the other one, we have:

0® 0= (=0 =o0 F)
IIT Feg [x, x]: alltm =

Typing rule (seq). From the tupling isomorphism, we have

IT koo (L2, x], [< (a, @ =)|

= < “F FBg [X, x] : a”Bgr ||F FBg [] a— O(HBg)Isog

which gives us the following isogmentation:

0 ® 0= (0=0) =0 F 0 ® (0o = 0)

Typing rule (var). We lift the previous isogmentation:

IT oy [, x] {1 el
= Oo(IT koo ([x, x], [1) : {a, @ = a)lls0)

5.3 The isomorphism

101

102 | 5 Augmentations are Normal Resource Terms

which gives us:

0® 0= (=0 =o0 F)
,f"‘—~~q+</

qa T

et

Typing rule (abs). Finally, we apply the currying isomorphism:

lx:abrmAy.y[x,x][]: (@ = (@ = a) > a) = a|lm

Isog (IT ko y [,][] 2 @llvm)

0,0=(0=0)=0,0

and we obtain:

o F (0o => (=0 =0 =0

5.4 Conclusion

Hence, we have a direct isomorphism between normal resource terms
and isogmentations. However, we can do better: in the next chapters,
we study the categorical structure of PCG, in order to extend this first
correspondence into a sound interpretation of resource terms in PCG.

Composition and Categorical
Structure

Now that we have established a first link between the resource calculus ~ 6.1 Composition for augmen-
and pointer concurrent games, we expand our game model with the tations 103
notion of composition. Indeed, one of the advantages of game semantics ~ 6.2 Strategies and identities 113
is its compositional aspect, representing how programs interact which 6.3 The categorical structure

each other. of PCG........... 116
Defini . f v b both 6.4 PCGisaSMCC 124
efining composition for augmentations is tricky, because both aug- s
,g P & . y, & 6.5 From qualitative PCG to
mentations need to agree on the events occurring in the shared arena HO 135
component; thus, Section 6.1 features a detailed presentation of the .
. 6.6 Conclusion and perspec-

construction. In doing so, we find out that the composition of two aug- tives 145

mentations must (in general) produce several augmentations — that is, we
need to consider sums of augmentations rather than single augmenta-
tions. This leads us to the definition of PCG strategies, which are sums of
augmentations (similar to how HO strategies are sets of plays). Section 6.2
defines strategies and in particular copycat strategies, which will be the
identity morphisms for PCG — the SMCC obtained with negative arenas
as objects and strategies as morphisms, presented in Section 6.4. Finally,
we show in Section 6.5 that our notion of composition is compatible with
the composition in HO games.

6.1 Composition for augmentations

In all this section, we fix A, B and C negative arenas. We start by defining <//
the composition of augmentations: how do two augmentations — say, the ct T dr

ones from Figures 6.1 and 6.2 — interact with each other?
Figure 6.1: g € Aug(A + B),

As for HO games, we first define the interaction of two augmentations, ~ withA=o®oandB=o.
then we hide the events occurring in the shared arena to obtain the
composition. However, because PCG augmentations are not linear, there
may be several ways to “match” events occurring in the shared arena

component — hence we need to first fix an isomorphism between those 0o F (0=0=0=o0
events. -
-—= 2+ “
- —
. . . . — B
6.1.1 Interaction via an isomorphism 5, —

Consider two augmentations 4 € Aug(A + B) and p € Aug(B + C).
Inuitively, we can only compose q and p provided “they reach the
same state on B”, so we first extract the “state they reach” via their
desequentializations: let us write |x;a| for the events of g that display
to A and |x; g for those that display to B — these inform x,a € Conf(A)
and x,g € Conf(B) and likewise for p.

Figure 6.2: p € Aug(B C),
withB=o0and C=(0 = 0= 0) = o.

Up to isomorphism of augmen-
tations, we may consider

(9) =xga F xq18,
But what does it mean to “reach the same state”? In general requiring
Xq18 = XpB is meaningless, since this data should really be considered
up to isomorphism. Stat.es n ‘B are not configurations, but.posszzons - we write x,15 =g X, for the
symmetry classes of configurations. Thus g and p are compatible if X415 induced equivalence.
and x,)p are symmetric, i.e. if there is a symmetry ¢: x;18 =g Xp 8-

but we need not assume that.

104 | 6 Composition and Categorical Structure

For instance, in Figures 6.1 and 6.2, we have
|wal ={ll,b} and |XBM| ={5,6},

where all four events maps to the same arena move q (the only move of
the singleton arena B = o). Hence, we have two symmetries:

¢ ={(a—5),({br6)} and Y ={(a—6),0b—-5}.

Composing g and p means constructing an augmentation on A + C,
resulting from the interaction of g and p. However, the behavior of this
interaction depends on the choice of symmetry — actually, we shall see
that different symmetries may lead to different augmentations! Hence,
we start by defining the interaction of two compatible augmentations
along with a mediating symmetry.

Definition 6.1 — Interaction via a symmetry

Consider q € Aug(A+B),p € Aug(B+ C) and ¢: x418 =B Xp 8-

The interaction p ®,, q is the pair (|p ® q|, <pe,q) With:

def

» theset|p ®, q| = |q] +1pl,
» the binary relation <,g, 4 on|p ®, q| defined as the transitive

def
closure of > = >, U, Uy,

with
[>q = {((116)/ (1/f)) | e <q f} s
By = {(2,e), 2,) e<pf},
by = {((1,e),(2,p(e))) | e € |xqal A pola p(dq(e)) = +}

U {((2e), (1,97 (e)) | e € |xpra| A polp.c(dp(e)) = +}.

For instance, we can construct p ®, g4 with the augmentations and
symmetry from above:

,,,

3 events from g 3 3 events from p (2,17) i
1 | >p (2,27) Pp |
SNy —
ST

Figure 6.3: p ®; g, where we annotate each immediate causality arrow with the relation it comes from (between >4, >, and).

6.1 Composition for augmentations | 105

Now, before going any further, we need to check that > is acyclic:

remember that we want to hide events of the interaction occurring in B to
obtain an augmentation on A + C, with a partial order.

Proof sketch: We start by proving that if > has a cycle, then it has a
cycle occurring entirely in B (Lemma 6.2), without minimal events in
B (Lemma 6.4). Focusing on such a cycle, we exhibit a contradiction in
Lemma 6.6. The proof is a direct adaptation of a similar fact in concurrent
games on event structures [12, Lemma 7.6].

Lemma 6.2 — A cycle must occur in B

Consider g € Aug(A+B), p € Aug(B + C) and ¢: x418 =g X8

If > has a cycle in p ®,, ¢, then it has a cycle entirely in B.

First, observe that > has no direct link between A and C.
Consider a cycle
er1>...>e;,>er.

Note that this cycle must pass through B; otherwise, it is entirely in
A or entirely in C, making >, or &>, cyclic, contradiction.

Now, consider a section

B oA A ,B
e > ey > ..o >el,
with the segment ¢;;1 > ... > ¢; entirely in A. By definition, we

must have
A

B A
€; l>q €11 l>q ...Dq €]

B
Bq €i1s

so that e? >, e]BH by transitivity of >,. Hence, a segment of the

cycle in A may be removed, preserving the cycle. Symmetrically, any
segment in C may be removed, yielding a cycle within B.

Hence, we restrict our attention to cycles entirely within B. Given
e1b>...>e;,>e;

a cycle, we call n its length. We show that this cycle can also be assumed
not to contain any element minimal in B.

First, remark that if e is minimal in B, then any event greater than e for
the causal order is also greater for the static order.

Lemma 6.3 — Minimality in B

Consider q € Aug(A + B) and ¢, ¢’ € |q| such that e <; e¢’, with e’
occurring in B and d,(e) minimal in B. Then, e <) e¢’.

Since (g is a forest, there is a unique f <(g) e’ such that f
is minimal for < (). By minimality-respecting of (q)), d4(f) is minimal
in A + B. By construction, f must occur in B, so by negativity of B, f
is negative. Hence by rule-abidingness and courtesy of g, f is minimal
for <;. Since q is a forest, it follows that f = e.

for e € [p ® q|, then e occurs
in A if and only if it has form (1,e’)
with d;(e”) = (1,a); and e occurs in C
if and only if it has form (2, e’) with
dp(e’) = (2,¢). Otherwise, it occurs in B.

[12]: Castellan and Clairambault (2021),
Disentangling Parallelism and Interference
in Game Semantics

We write e (resp. B, e0) if
the event e occurs in A (resp. B, C).

minimality-respecting:
e € min(<qg) © Jdy(e) € min(<ars);
rule-abidingness:

ifa <¢) b, thena <4 b;
courtesy:

(et =g fore—y fT)=e—q f-

106 | 6 Composition and Categorical Structure

if e occurs in B, we say it occurs
in B! if it has the form (1, ¢’) for e’ € |q],
and occurs in B” otherwise.

We define <(pg,,q) with

(1,e) S(popq) 1 f)
(2/ 8) Sﬂp®(qu (zlf)

iff
iff

e<g f,
e <gp) f.

Exploiting that, we prove that if a cycle exists, then there is a cycle without
any minimal event in B.

Lemma 6.4 — Cycle without minimal event

Consider g € Aug(A+B), p € Aug(B + C) and ¢: x418 =g Xp 8.
If > has a cycle, then it has one entirely in B and without minimal
event in B.

By Lemma 6.2, assume the cycle is entirely in B.

Consider a cycle
er>...>e, e

entirely in B of minimal length. Seeking a contradiction, consider e;
minimal in B. Assume first it is in B*. Since B is negative, we cannot
have e;_1 >, e;. Hence, if ¢;11 is also in BY, we have

€i-1 Bp € Bp eit1

s0 ei-1 Py €+1, shortening the cycle and contradicting its minimality.
So e;4+1 is in BL. But then e; >, ei+1, and e; is in BY, so we have
e; = (2, fi) with polg,(dp(fi)) = +. Hence e; >, e;41 implies ;1 =
(1, 971(fi). As an isomorphism of configurations, ¢ preserves the
display to B, so ¢;4+1 is minimal in B!.

In all cases, the cycle contains a minimal element of BL. Callit¢;,
then
€ B>y it l>q A l>q €j l>q) €j+1

where all relations in between e; and ¢; are in > (by definition, only
those can apply until we jump to B via >,), and where by definition,
p(e j) = ej+1. By transitivity, ¢; >4 ¢;. But by Lemma 6.3, this entails
ei <ge,q) ¢j- Now as ¢ is an isomorphism of configurations, this
implies @(e;) <(pr®yq) (p(ej), hence e;_1 <@e,q €j+1-By rule-abiding,
this entails ¢;—1 >, ¢j4+1. But this means that the segment e; ... ¢;
may be removed from the cycle, contradicting the minimality of the
later.

So we focus on cycles entirely in B, comprising no minimal event.

If e € |p ®, q| is not minimal in (p ®, g), it has a unique
predecessor in (p ®, q)) called its justifier and written just(e).

Considering whether an event occurs in B! or in BF is not precise enough:
we also need to consider its polarity, since > is defined taking into
account both the arena side and the polarity of events.

We say e occurring in B has polarity 1 if it has the form (1, e’)
with pola.g(dy(e”)) = +, has polarity r if it has the form (2,e’) with
polg, ¢(dy(e’)) = +, and has polarity ¢ otherwise. We may then write e?,
e® or e? instead of e, depending on its polarity.

6.1 Composition for augmentations | 107

Lemma 6.5 — Deadlock-free auxiliary lemma

We have the following properties:

(1) ifer>, f? thene > just(f),
(2) ifer, f? thene l>’;, just(f),

where the events are annotated with their assumed polarity.

(1) We must have e = (1,¢’) and f = (1, f) with e’ <; f”,
with f’ negative. By rule-abiding and courtesy, just(f’) —4 f’. Since
q is a forest, e’ < just(f”).

(2) Symmetric.

For any e € |p ®, q|, its depth, written depth(e), is 0 if e is
minimal in (p ®, q)), otherwise depth(just(e)) + 1.

We finally prove the deadlock-free lemma:
Lemma 6.6 — Deadlock-free lemma

Consider q € Aug(A +B), p € Aug(B + C) and ¢: x4 =B Xp 8.

Then > is acyclic.

Seeking a contradiction, assume there is a cycle. By Lemma
6.4 it is entirely in B, without a minimal event in B. Writing it
p=e1>...>ey; > ey, its depthis

n
depth(p) = > depth(e;),
i=1

and w.l.0.g. assume p minimal for the product order on pairs (1, d)
where d = depth(p) and # is its length. We notice that p has no
consecutive >, or >, — or we shorten the cycle by transitivity,
breaking minimality. It also has no consecutive >, by definition.
This entails that n = 4k, with w.lo.g.

e4i Dg €aiv1 B €4i12 Pp €4i43 B Chita .

Then for all 7, e4i+1 has polarity 1. Otherwise, it has polarity ¢,
making esi+1 >¢ esi+2 impossible. Likewise, e4i13 has polarity r,
while e4;42 and e4;44 have polarity @.

We claim just(esit1) >4 just(es;). Indeed just(eqi+1) —>(po,q) C4i+1 by
definition; and by rule-abiding this entails that just(esi+1) >4 eqi+1-
Since ¢ is a forest, that makes just(es;+1) comparable with ey; for >
If just(egi+1) = ea;, then

€4i-1 Bp €4i42

since ¢ is a symmetry and by rule-abiding — but this allows us to
shorten the cycle, contradicting its minimality.

108 | 6 Composition and Categorical Structure

Likewise, if e4; >4 just(esi+1), then
esi D4 just(just(esi+1))

by Lemma 6.5 — we cannot have an equality as they have distinct
polarities. But then

e4i Bg just(just(esit1)) B>y just(just(esis2)) Bp €4i43

yielding a cycle with the same length but strictly smaller depth,
absurd. The last case remaining has just(esi+1) >; es;, but so
just(esi+1) >4 just(es;) by Lemma 6.5 (again, the equality is im-
possible for polarity reasons).

With the same reasoning, just(es;+3) > just(esi+2); and just(esi+2) >
just(esi+1) and just(esi+4) B¢ just(esirs) by definition. So we can
replace the whole cycle with

just(ei+a) >¢ just(eqi+s) Bp just(esiva) B¢ just(esi+1) B4 just(es;)

reversing directions, with the same length but strictly smaller depth,
contradiction.

Since 1> is acyclic, the binary relation <,g 4 also is acyclic — which will
allow us to extract an augmentation r € Aug(A + C) with a partial order
<, fromp &, q.

Proposition 6.7 — Interaction is acyclic

The interaction p ®, g is a partially ordered set.

By Lemma 6.6, &> is acyclic. Therefore, its transitive closure
is a partial order.

6.1.2 Composition via an isomorphism

Now, we define the composition: as in HO games, we hide the events
occurring in B and only keep events occurring in A and C.

Definition 6.8 — Composition via an isomorphism

Consider g € Aug(A+B), p € Aug(B + C) and ¢: x418 =B Xp 8.

The composition of g with p according to ¢, noted p ©, g, is the
tuple (|p ©¢p 91, <po,q), <po,q, Ipo,q) defined with:

lpOpal = Ixgal +1xpcl
Soen) T Sxgakrpre
e <popq f Mf € <pe,q f
ap@M : (1,e) = d4((1,0))
(2,e) = d,((2,e))

6.1 Composition for augmentations | 109

Figure 6.4: Composition p O¢p q

Recall the augmentations from Figures 6.1 and 6.2, with the
isomorphism

¢ ={(a5),(b+6)}.
The composition p ©, g is represented in Figure 6.4.

In order to show that this composition is well-behaved, we need to
characterise immediate causal dependency in the interaction. It turns out
that this is very constrained - this is detailed in two lemmas: the first, for
forward causality, follows.

Lemma 6.9 — Forward causality
Ife=(1,¢) —p@yq f for e’ € |g|, then we have:

(1) Ife’isnegativein g, then f = (1, f') and e’ —; f”;
(2) Ife’is positive in g and occurs in A,
then f = (1, f') and e’ —; f';
(3) Ife’is positive in g and occurs in B, then f = (2, ¢p(e”)),

and symmetrically for e = (2, €") —e,4 f fore’ € |p|.
Any immediate causal link must originate from one of the
clauses of the relation > above.

For (1), for polarity reasons it can only be (1,e) >; f’ so that
f'= (@1, f)withe <; f, and furthermore we must have e —, f or
that would immediately contradict e —pe,,q f-

For (2), similarly only the clause >; may apply.

For (3), we must show that e >g f is impossible. If that was the case,
then f = (1, f’) with ¢’ <; f’, where we must have e’ —, f’ (or
contradicte — f). Butase’is positive, by courtesywehavee” — () f’,
and thus @(e’) =) @(f’) as ¢ is an order-isomorphism. And by
rule-abiding, that entails ¢(e’) <, @(f’), so that altogether we have

ey (2,0) >y 2,0(f) >y f

contradicting the fact that e <y, f-

Symmetrically, in the “backward” direction, we have:

Figure 6.1: g € Aug(A + B),
withA=o®oandB =o.

o F (0=>0 =0 >0

,_772+///
5+//

6+

Figure 6.2: p € Aug(B + C),
withB=oandC= (0= o0=0)=o.

110 | 6 Composition and Categorical Structure

Lemma 6.10 — Backward causality
Ife —pe,q (1, f') = f for f” € |q|, then we have:

(1) If f"is positive in g, then e = (1,¢’) and e’ —, f;
(2) If f’ is negative in g and occurs in A,
thene = (1,¢")and ¢’ —, f’;
(3) If f’is negative in g and occurs in B, then e = (1, p~1(¢")),

and symmetrically for e —q,q (2, f') for f’ € |p|.

Analogous to the proof of lemma 6.9.

We can now prove that the composition is an augmentation.
Proposition 6.11 — Composition via an isomorphism

Consider q € Aug(A+B), p € Aug(B + C) and ¢: x418 =B Xp 8.
Then the composition p ©, ¢ is an augmentation on A + C.

Let us call an event e € [p @, q| visible if it appears in
p Oy g, hidden otherwise. For brevity, we write r = p ©, g and

F=p®¢q.
First, we check that (r) = (|7|, <), d;) is a configuration. This is

clear by construction:

(r) = x47a F Xppc € Conf(A +B).

Then, we check that r is an augmentation.

Forestiality. An event e € |r| has at most one causal predecessor,
by Lemma 6.10; and <, is acyclic by Proposition 6.7.

Rule-abidingness. Immediate from the definition and the fact that g
and p are rule-abiding.

Courtesy. Consider e —, f: this implies a sequence
e —p e —p ... —>p g =7 f

in 7, where ey, . . ., ey are hidden.

If e is positive, then e; cannot be hidden by Lemma 6.9, so k = 0
and e —; f. Asboth e and f are visible, this is only possible if they
both come from g or they both come from p. In any case, e —¢) f
by courtesy of g or p.

Likewise, if f is negative, we use Lemma 6.10 to show thate —¢) f.

Determinism. Since q and p are deterministic, and >, does not
branch, Lemma 6.9 entails that <; can only branch at negative
visible events, from which it follows that r is deterministic.

Negativity. An event minimal in p ©y g must come from p, must
occur in C hence be visible, and be minimal in p, hence negative.

6.1 Composition for augmentations | 111

+-coveredness. Immediate from the definition and the fact that g
and p are +-covered.

Moreover, this operation preserves isomorphisms. First, remark that for
any augmentations g, p € Aug(A + B) with an isomorphism ¢: g = p, we
know that ¢ also is a configuration isomorphism and ¢: (g) = (p). We
note @a (resp. @p) the restriction of ¢ to the events occuring in A (resp.
B) — which is well-defined by arena-preservation of ¢. Then:

DA Xg1A ZA Xpia and PB: Xq1B =B XppB -

Lemma 6.12 — Composition preserves isomorphism

Consider gq,9” € Aug(A + B) and p,p’ € Aug(B + C), with the
augmentation isomorphisms :
p:q=q and Y:p=p’,
and the configuration isomorphisms :
0: Xq1B =g XpB and 0’ Xq'1B =g Xp'1B /

such that the diagram of Figure 6.5 commutes.

Then, we have an augmentation isomorphism:

Y Opo p:pOoqg =p Opq.

We set the bijection

V@ : lp®pl = |p @ q
(Le) = (1,¢)
2, f) = @)

which sends >, to >, and >, to >, by definition of ¢ and ¢.
Likewise, it sends >¢ to g+ by hypothesis (Figure 6.5). Clearly, the
symmetric statement holds for the inverse.

Therefore, it is clear that ¢ ®g, ¢/ @ restricts to
Y @0 p:pOo g =p Oo q’

as required.

This allows us to extend the definition of composition to isogmentations:

for any q € Aug(A + B) and p € Aug(B + C), if ¢: xq;8 =B Xpig, We

define - -
POyq = g0, p-

For now the choice of representatives still matters because of ¢, but we
shall see in the next section that we can actually define a composition
of isogmentations which does not depend on the representatives, by
summing over all symmetries.

©¥B

XqiB ——— Xg'IB

0 |
XpB ——— Xp'1B

B

Figure 6.5: Congruence

112 | 6 Composition and Categorical Structure

(1,c") (1,d%) Bq

6.1.3 Composing isogmentations

We now have a definition of composition of augmentations according to an
isomorphism — but what about composition of augmentations/isogmentations
in general? Indeed, the composition of g and p is only defined once we
have fixed a mediating ¢: x;18 =g X, 8, which is not necessarily unique.
Worse, the result of composition depends on the choice of ¢: if Figure 6.3
was constructed with the symmetry ¢ = {(a — 6), (b — 5)}, we would
get the alternative interaction of Figure 6.6.

/Q,)
>p (2,27) Py

oy) Ty

Figure 6.6: p ®y q, where we label each immediate causality arrow with the relation it comes from (between >, >, and).

0® 0 F(0=>0=0=0

e
////

Figure 6.7: p Oy g (Where we dropped
the tags from events’ names for the sake
of brevity).

C+

The corresponding augmentation p ©y g is shown in Figure 6.7; the two
augmentations p ©, g and p Oy, q are clearly different — worse, they are
not even isomorphic!

This is reminiscent of the behaviour of resource substitution. Consider
for example the term

M = Af.f [x][x].
The substitution M([y, z]/x) yields two different resource terms:

(Af-f [xlx]) Ly z)/x) = Af-f [yl (2] + Af - f (2] [y],

which is analogous to how the composition of g and p yields two different,
non-isomorphic augmentations. As substitution of resource terms yields
sums of resource terms, this suggests that composition of isogmentations
should produce sums of isogmentations.

Definition 6.13 — Composition of isogmentations

Consider g € Isog(A + B) and p € Isog(B + C).

Their composition p © q is defined as:

pogs >

P: xSrBEBxErB

POy qg-

For this definition to make sense, we want the composition to be com-
patible with isomorphisms, so that the isogmentations obtained by the
composition do not depend on the choice of representatives.

Lemma 6.14 — Composition does not depend on representatives

Consider q € Isog(A + B) and p € Isog(B + C).

For any g4 € gand p € p, we have:

pOg= >, POsq.

0: xquEBIp[B
Fix any isomorphisms ¢: q = g and ¢: p = p, projected to
¢B: xﬂrB =g Xg1B and 1#52 XB[B =g XprB -

Writing [x48 =g x,g] for the set of isomorphisms 6: x5 =B Xp18,
we define the bijection:

Q ¢ [xge = xpe]l = [xg8 =8 xpe]
0 +— YPgobogg

Then, for any 0: xqg8 =g Xpe, we can apply Lemma 6.12 (the
diagram of Figure 6.5 commutes by definition of Q) to obtain

POog = pOa) - (6.1)
Now, we calculate:
POA = X6:xqpzers PO0 9 (Definition 6.13)
= 20: xq=axpre P O0Q(0) 4 (Equation 6.1)
= 20 xe=sx8 P Q0 4 (Q is a bijection)

as required.

This allows us to define, in general, the composition of two augmentations
g € Aug(A + B) and p € Aug(B C) as:

poqg=gop = >, posq (6.2)

0: Xq18=BXp 1B

and we shall often use this equation to move between augmentations
and isogmentations — remark that the composition of augmentations is
always a sum of isogmentations.

6.2 Strategies and identities

6.2.1 Strategies

Recall that in HO games, strategies are sets of plays — similarly, in PCG
strategies are weighted sums of isogmentations.

Definition 6.15 — Strategy

A strategy on arena A is a function ¢ : Isog(A) — @Jr, where @Jr is
the completed half-line of non-negative reals. We then write : A.

6.2 Strategies and identities

113

114 | 6 Composition and Categorical Structure

An isogmentation q € Isog(A)
may be considered as a strategy, with
coefficient 1 for q and 0 for any other
isogmentation.

Figure 6.8: A configuration x € Conf(A),
withA=0=o.

2, b)*

Figure 6.9: The augmentation ccy.

We regard o: A as a weighted sum

o= >, o(-aq,

qelsog(A)

and we write supp(o) for its support set:

supp(c) = {q € Isog(A) | o(q) # 0} .

We can lift the composition of isogmentations to strategies.
Definition 6.16 — Composition of strategies

Considero: A+ Band 7: B+ C.

Their composition 7 © o: A I C is defined via the formula:

100 = > >

gelsog(ArB) pelsog(Br-C)

o(@t(p)- (pP©Qq).

In other words, the coefficient (7 © ¢)(r) is the sum of 6(q) X t(p) over
all triples g, p, ¢ such thatr = p ®, q - there are no convergence issues,
as we consider positive coefficients and we have been careful to include
+00 € R, in Definition 6.15.

We have now defined strategies from A to B, as well as a composition
on strategies: we show in Section 6.4 that PCG, the structure formed by
negative arenas and strategies between them, is a category.

6.2.2 Identities

But first, we focus on some key strategies: copycat strategies, formal sums
of specific isogmentations presenting typical copycat behaviour, which
will act as identities in PCG.

We start by defining their concrete representatives.
Definition 6.17 — Copycat augmentation on x

Consider x € Conf(A) on negative arena A. The augmentation
ccx € Aug(A + A), called the copycat augmentation on x, is defined
with

def
» (ccy) = xFx,
» the causal order <. is the transitive closure of <, aug-
mented with:

2, 1) if e and pola(dx(e)) = +,

1,e) —c, <t f
,f) ife <, f and poly(dx(e)) = —.

(21 e) _DCC.‘(

In other words, «, adds to x + x all immediate causal links of the
form (2,e) — (1,¢) for negative e, and (1,e) — (2,¢e) for positive e.
Consider for instance the configuration x from Figure 6.8; the copycat
augmentation on x is presented in Figure 6.9.

This lifts to isogmentations.
Definition 6.18 — Copycat isogmentation on x

Consider x € Pos(A). The copycat isogmentation on X, noted
@y € Isog(A + A), is defined by:

def
@y = .

Again, for this definition to make sense, we want the copycat isogmenta-
tion not to depend on the choice of representatives.

Lemma 6.19 — Copycat preserves isomorphisms
Consider x, y € Conf(A). Then,
x=py iff ax=cay.
Only if. Consider 0: x =, y, then

Qo : CCy = @y

(ie) = (i,0(e)
is an augmentation isomorphism.
If. Likewise, if ¢ : ccy = ccyy, then

Op : x =y
e +— fsuchthate((1,e)) =(1,f)

is a configuration isomorphism.

Now, we can define our identity strategies: sums of copycat isogmentation
on all positions of an arena. But with which coefficients? Since we want
to obtain identities, we need to choose coefficients which exactly cancel
the sum over all symmetries in the composition (Definition 6.16).

Definition 6.20 — Copycat strategy

The copycat strategy on the arena A, noted ida: A + A, is

def 1
o 2 L e
b= 2 pSyme)

xePos(A)

where Sym (x) is the group of endosymmetries of x, i.e. of all
symmetries 0: x =5 x — remark that §Sym (x) the cardinality of
Sym (x) does not depend on the choice of the representative x

This use of such a coefficient to compensate for future sums over sets of
permutations is reminiscent of the Taylor expansion of A-terms.

6.2 Strategies and identities

115

116 | 6 Composition and Categorical Structure

6.3 The categorical structure of PCG

We finally have all the ingredients needed to build a category:

negative arenas (objects),

strategies between them (morphisms),
composition,

and identities.

vvyyy

Categorical laws will be proven in several stages. First, we establish iso-
morphisms corresponding to them, working concretely on augmentations
— this means that these laws will refer to certain isomorphisms explicitly.
Then, we use the compatibility of composition of augmentations with
isomorphisms to transport these laws to isogmentations.

6.3.1 Associativity of the composition

To prove that the composition is associative, we define a ternary composi-
tion and prove that the composition of three morphisms (using the binary
composition twice) is equal to their ternary composition, no matter the
order of the compositions.

First, we define ternary interactions.
Definition 6.21 — Ternary interaction

Consider g1 € Aug(A + B), g2 € Aug(B C) and g3 € Aug(C + D),
with configuration isomorphisms:

¢: XgB = Xgppe and P Xgypc Z¢ Xgs0c -

We define the ternary interaction g3 @i g2 ®% g1 with:

ef
|95 ®, 92 ®;, 41 L gl + g2l +laal s
<€, F Ao, G el e<q ey fori=1,2,3,

< = (L e), 2 ()| polas(dq((1,e)) = +}
U {2 ¢(e)), (1,) | polag(dq,((1,€)) ==},

@ {(2),3,(e) | polec(@y((2,0) = +)
U {(G3,9(e)), (2,0) | polgyc(@,((2,€))) = -},

i 3 3 3 3 3
<1q3®3]q2®3)q1 = <9 U <, U < U < U <]1P .

6.3 The categorical structure of PCG | 117

This allows us to define ternary compositions.
Definition 6.22 — Ternary composition
Consider q € Aug(A + B), p € Aug(B + C), r € Aug(C + D), with
configuration isomorphisms ¢: x4 =g Xpg and Y: Xpic =¢ Xrpc-

We define their ternary composition r Qi P @% g with

lrejpogal = lxgal + 0 +|x ol
(1,e) S[]r@ip@%q]] (L f) iff e<y,f
(3, e) Sﬂr@ip@%q[] @G, f) iff e Sxpre f)
(i1) Sroppogg (o) i (ire) (<vappagg) Grf)
? Loy (1,dy, ()
(3,) = (2,0x,,(e)).

3,43
roy,,peq,q

We want to prove the following claim:

1R

7 Oyort (POg q) = 7O} POy q
for q,p,r, @,y as in the definition above, and the bijections

l:e—> (1,e) and rie (2,e).

First, we need some lemmas on relations:
Lemma 6.23 — Relations on disjoint sets

If «is a relation on A & B two disjoint sets, then the following are
equivalent:

(1) Vby,bp e Band ay,...a, € A,
if bp « 2a; « ... € 3, <« by,
thenﬂbi,...,b;(eBsuchthat b1<b’1<...<b;(<b2;
(2) «B=(«B)".
Lemma 6.24 - Star of two relations

If €1, €, are relations on A, then

(¥ <€) =(¥).

Now, we can go back to Equation (6.3).
Proposition 6.25 — Composition is associative

Consider q € Aug(A + B), p € Aug(B + C), r € Aug(C + D), with

configuration isomorphisms ¢: x4 =g Xpg and Y: Xpc =¢ Xr1c-

Then we have:

(r Oy p) Orop 4 = 1 Oport (POp q) -

(royp)Owpq (63)

For now we do not claim that

rod p @g, g is an augmentation. In par-

4

ticular we did not prove the acyclicity

of <r®a;,®3)q, thus we do not know if

< i ti tric. Hi th
_’Ofb poyq 18 antisymmetric. However the
proof of Proposition 6.25 does not rely

on this; the antisymmetry of <
’ b4 Y O =107 popa

will actually be a consequence of the
isomorphism between r @i P @3, q and

(r Oy p) Orop 4.

7 and ¢ are the bijections
l:e— (1,e)and »: e > (2,e).

118 | 6 Composition and Categorical Structure

Proof. By definition of the composition, it is clear that

tog:xqi8 =B X(royp)iB and Yo » X(poyq)IC =C XriC

indeed, composition preserves the underlying configuration struc-
ture and only adds tags to events.

To prove that the two augmentations are isomorphic, we actually
prove that each is isomorphic to the ternary composition 7 © PO Y-

We start by proving that
(r©y p) Oropq = 1O} PO q.

1: we have not proved yet that the object The two sets of events of both augmentations! differ only by the
r@g’b P Oa q is an augmentation, but it will tags, so we set x with
be a consequence of the isomorphism.

(1,e¢") ife=(1,¢)

Ye € | (7’ @lp P) Oloqo lﬂ ’ X(e) = {(3 E’) ife = (2 (2 e’))

and we have x: | (r Oy p) Orogp q| = |7 @i p @% q|.
We now prove that x is an isomorphism of augmentations.

Arena-preserving. We easily check that

d

a(’ewl’) Orop ~ 10ypepg X -

Configuration. By definition of the composition, we have:

Sﬂ(}’@#rﬁ)@@owa] = Sxga * SX’OWD

= qurA + (0 + er[D) °
Writing x (<) for {(x(a), x(b)) | a « b} for any relation «, we obtain:

X (SU(TO’JJV)@!’OMD) =X (qurA + (0+ erro))

=(rojpopg) -
Causality. By definition, we have:

S(royp)orp (qq Y do,p W <]"°<P)) (|xq Al + |er¢PFD|) .

For any i € N, set E and relation «, we note (i, E) = {(i,e) | e € E}
and (i, €) = {((i, e1), (i, 2)) | e1 < e2}. Then, by definition again:

<‘r®¢p = (2/ ST@#,}?)
= (2, 9) W (2,<) W (2,9)) 12, (1]xp8D)) ¥ (2, (2, |%:10])) -

Now, since <0, is defined on (2,|r ©y pl), i.e. on (2,(1,[p|)) and
(2,(2,]r])), we can add:

royp = ((2/ <) WI(2,<) W (2, <‘1,0))*
M (2, (1 1xp18l) W (2, (2, |2, 10]) W (1, 1q1) -

6.3 The categorical structure of PCG

Moreover, <, is defined on (1,]gl), and <, on (1, |x48|) and on
(2,|(r oy pl8l) = (2, (1, |xp8l)). So we can also write
Y V] o
= (44 9 Qo) 1 (@2 (L 125180 2, 2,1, 10]) (1, IqD)

Putting both equalities together, we obtain

Strouponmeq = | (94 ¥ (2, <) W (2, <) ¥ (2, 9y))" W <oy)

M@ (@ [xpre)) @ (2, (2, |xrp0]) @ (1, [q1)
(@, [xq0al) W (2, (2 [xr10])) -

For the sake of readability, we write:

E= (2/ (1/ |foC|)) © (21 (2/ |erC|)) ’
F= (2/ (1/ |prB|)) W (2/ (2/ Ixerl)) W (1/ |‘7|) s
<= (W (2,9 ¥Q2,<)¥(2,<Y) Y <Gop)
Then < is defined on E W F, and we can apply Lemma 6.23. Indeed,

for any chain
fi<er<ey<...<e,<fo

with fi, o € Fand V1 < i < n,¢; € E, we know that all links must
come from ((2, <) W (2,<,) W (2,<y))" (because <y and <o are
only defined on F); so we also have f; < f,. So, using Lemma 6.23,
we write:

S(qu;p)O/oq)q = (<‘q @ ((2/ <]p) W (2/ <‘r) © (2/ <]1,U))* © <]l70<p)*
T ((1/ |xq [‘A|) W (2/ (2, Ixr [Dl))) .

By Lemma 6.24, we obtain

S(roup)oneq = (g W2, <) ¥(2,<9,) W (2, 99)W <pop)”
r ((1/ |xq rA|) © (2/ (2/ |xr fDl))) .
We can extend x to anisomorphism x’: |g|+(|p|+|r|) = |r®ip®(3;)q|
with
(1,e¢") ife=(1,¢)

Ve € lgl + (Ipl +1r]), X'(e) = {(2,¢) ife=(2,(1,¢)) -
(3,¢) ife=(2,(2,¢))

Then it is clear that <o, p)o/.,q and S'%F’@i are isomorphic via x,

q
concluding the first part of the proof.

Likewise, we prove r Oyo,.-1 (popq)=r Qi p @g q.

Hence, (1 Oy p) Otop § = 7 Opopt (P Op q). O

119

120 | 6 Composition and Categorical Structure

Lemmas and proposition used:

— 6.14: composition does not depend on
the choice of representatives;

- 3.12: for any isogmentation q, (q) = q;
— 6.25: associativity of composition of
augmentations.

This means that the composition on isogmentations is associative.

Lemma 6.26 — Associativity for isogmentations

Consider g € Isog(A + B), p € Isog(B I C) and r € Isog(C + D).

Then,

(rop)©q =ro(Pogqg).

We compute:

rop)og = D

0: XETC =cXric

= X (Gopoa)

0: xc cXC

- 3

0: xprc cxrrc

rogp|Oq

r@ep)Gq)

= (((rog p) Op 9))
Q:xprc =cXric \p: Xqre=gl(xps)

(I’ Op E) 650({) 9))

e:prC =cXpc \P: quB BXpr8

([Qeor‘1 (E Q(p g)))

- 3 (3

0: Xpic=cXric VP Xqle=BXpl8

using the definition of composition of isogmentations; the definition
of composition of strategies; Lemma 3.12 with Lemma 6.14; the
definition of composition of augmentations; a direct substitution;
and Proposition 6.25.

We then perfom the same steps in reverse order to obtain:

2 2

0: Xprc=cXric \P: XqiB=BXp[B

(r©go,1 (pPOL Q)| = ro(POQ) .

Thus, we have the associativity of composition for strategies.
Proposition 6.27 — Associativity for strategies

Consider 0: AF B, 7: B+ Cand 6: C I D strategies. Then,

00(tGo)=0BO01)00.

Direct by bilinearity of composition and Lemma 6.26.

6.3.2 Neutrality of copycat

Again, we start with results on augmentations, before moving on to
isogmentations and strategies.

6.3 The categorical structure of PCG | 121

First, we characterize causal links from negative events to positive events
in copycat augmentations.

Lemma 6.28 — Causal links in copycat

Consider x € Conf(A), and e, f* € |ay| such thate™ —, f*.

Then there are two cases:

(1) e=(@1,a), f =(2,a), and pol,(a) = +,
() e=(2a), f=(1,a), and pol(a) = —.

Configurations preserves
causality, meaning the order on x follows
the order on A; and arenas are alternating,
(1,a) <e, (2,0) <, 2,b) <, (1,D). meaning that an event and its imediate
successor cannot have the same polarity.

If e = (1, a) then for any a* —, b~ we have

Likewise, if e = (2, a) then for any a~ —, b* we have

(2,a) <, 1,a) <, (1,0) <, (2,D).

These are the only causal links that will concern us in the proof of
neutrality; indeed, the following lemma expresses the fact that in any
proof of isomorphism between two augmentations, if we already know
their underlying configurations are isomorphic, then we only have to
check the links from negative to positive events.

Lemma 6.29 — Isomorphic underlying configurations

Consider two augmentations g, p in any arena D.

If there exists a configuration isomorphism ¢@: (g) =p (p), then
forany e®, f~ € |q|,

"~ fT e le)" —p p(f).

By courtesy and rule-abidingness, e* —; f~ if and only if
et —qy f~. Likewise, p(e)" —, @(f)~ if and only if p(e)™ — ()
@(f)~. Finally, since ¢ is a configuration isomorphism, e* —) f~
if and only if p(e)* — @) @(f)".

We can now prove the neutrality of copycat.
Lemma 6.30 — Neutrality of copycat

Consider g € Aug(A + B), x € Conf(B) and ¢: x48 =g x. Then,

CCXQZO(pqEq.

Likewise, for y € Conf(A) and {: y =a x,41a, we have:

g Oyop-1 CCy =4

122

6 Composition and Categorical Structure

We have |ccx Oy | = |x41al + (@ +|x]). Consider:

x: o lql — |ch®é’0(pq|
(1,e) if e € |xgal

(2,2, 9(e)) ife € |xga.

e

We prove that yx is an isomorphism of augmentions.
Arena-preverving. Clear by definition.

Configuration-preserving. Since @ preserves the configuration order,
we have:

X (Sﬂqll) = S«qu +(0+ <) = S (€2Opopq) -

Causality-preserving. For the sake of brevity, we write —¢ for
>, @popq AN —o fOr —> 0y, q- By Lemma 6.29, we only need to
look at links from negative to positive moves.

Consider e~ —; f*. Then we have four possibilities:

(1) If E,f € |erA|.
Then x(e) = (1,e)” and x(f) = (1, f)*. By Lemma 6.9,

(1,e)” —e (1,).
Hence x(e) —o x(f).

(2) Ife e |xqrA| andf € |xqu|.
Then x(e) = (1,¢e)” and x(f) = (2, (2, (f)))*. We have:

(1,6)” —e (1, f) e (2, (1, 9(f)) —e (2,2, ()"

by Lemmas 6.9 and 6.28. Moreover, (1, f) and (2, (1, ¢(f)))
occur in B, so after the hiding we have x(e) —¢ x(f).

3) Ife e |erB| andf (S |X,”A|.
Then x(e) = (2,(2, ¢(e)))” and x(f) = (1, f)*. We have:

(2/ (2/ (P(E)))_ - (2/ (1/ (P(e))) - (1/ e) —®® (1/ f)+
by Lemmas 6.9 and 6.28. Moreover, (2, (1, ¢(e))) and (1, e)
occur in B, so after the hiding we have x(e) —¢ x(f).

@ Ife, f € |xgal

Then x(e) = (2,(2,¢(e))” and x(f) = (2,(2,¢(f))*. By
Lemmas 6.9 and 6.28, we have:

(2,(2,9(e))” —e (2,(1, p(e))) = (1,¢)
—e (1, f) e (2,(1, ¢(f)) —e (2,2, ¢(f))".

Again, (2,(1,¢(e))), (1,e), (1, f) and (2, (1, ¢(f))) occur in B,
so after the hiding we obtain x(e) —¢ x(f).

Symmetrically, if e~ — f*, then x'(e) —4 x 7' (f).

The proof for the other isomorphism is similar.

6.3 The categorical structure of PCG | 123

It may be surprising that ccy O g = g regardless of ¢: the choice of the
symmetry is reflected in the isomorphism x: @y O g = g obtained,
which the statement of this lemma ignores.

Again, this result on augmentations extends nicely to the composition
with the copycat strategy.

Proposition 6.31 — Neutrality of id
Consider 0: A+ B. Then,idg ® 0 = 0 ®ida = 0.
Proof. We focus on idg © o. First, we have:

idg®© o

(Z m'mx)Q(> U(Q)'Q)

x€Pos(B) qelsog™ (ArB)

a(a)
xePos(B) qelsog*(ArB) jiSym (x)

_ o
- Z Z | ﬁsym (x) (mﬁ © q)

x€Pos(B) qelsog™ (ArB

- 0@ (&=
= 2 2 Eme (@)

x€Pos(B) qelsog* (ArB)

(@ ©Qq)

= 33 e (e
x€Pos(B) qelsog* (ArB) ﬁ ym (X)

= 3 D % : (CD5®¢706 g)

x€Pos(B) qelsog™(ArB) 0: xqs=BX

g

@)
x€Pos(B) qelsog™(ArB) 0: xqe=BX ﬁsym (X) _
o(@
x€Pos(B) qelsog™(ArB) 0: xqe=BX ﬁsym (X)
o
P D I s o

xePos(B) qgelsog*(ArB) 0: xqpg=BX ﬁSym (xqu)
s.t. XqrB=BX - -

_ Z Z o(q) q

qelsog* (AFB) QESym(m) #Sym (xgrB)

= > o@-q

qelsog™ (A+B)

M =M

= 0
by unfolding the definition of the identity strategy (6.20); unfolding Lemmas used:
the definition of the composition of strategies (6.16); definition of ~ 3.12: representatives and isomorphism
. classes;
the co.pycat isogmentation (6.18);];quatlf)n. (.6.2) and Lemma .3..12, — 6.30: neutrality of copycat for augmen-
Equation (6.2) and Lemma 3.12 again; definition of the composition tations.

of augmentations (Eq (6.2)) and of the copycat augmentation (6.17);
Lemma 6.30; Lemma 3.12; Lemma 3.12 again; and a direct reasoning
on symmetries.

The proof of the identity ¢ © ida = ¢ is symmetric. O

124 | 6 Composition and Categorical Structure

Notice how the sum over all symmetries exactly compensates for the
coefficient in Definition 6.20!

All in all, we obtain a category PCG.
Theorem 6.32 - PCG is a category

PCG is a category defined with:

» the objects are negative arenas,

» for any arenas A, B, the morphisms from A to B are the
strategies on A - B,

» the composition is given by Definition 6.16,

» for any arena A, the identity is ida.

Composition is associative by Proposition 6.27 and identities
are neutral by Proposition 6.31.

6.4 PCG isa SMCC

Now, we prove that PCG has a symmetric monoidal structure (see
Definitions 1.1 and 1.2).

6.4.1 Tensor

We already defined the tensor of arenas (Definition 2.4) and of configura-
tions (Definition 5.6). We now extend this construction to augmentations,
then isogmentations, and finally strategies.

Definition 6.33 — Tensor of augmentations

Consider g1 € Aug(A; + By) and g2 € Aug(A; + By).
Their tensor is the augmentation 41 ® g» € Aug((A1®Az) + (B1®By))
defined with:

(71 ® q2) = (g, 18 ® Xgy1a,) F (g1 18, ® Xg,18,)
and

(k,(i,e)) <qoq (I, (i, f)) & e<y f.

This construction clearly preserves isomorphisms, hence it lifts to isog-
mentations using any representative. For definition, we take:

def

NO®L = Q1P € Isog(A; ® Ay - B; ® By)

for any isogmentations q; € Isog(A; + B1) and gz € Isog(Az + Ba).

Finally, we lift the definition to strategies.
Definition 6.34 — Tensor of strategies

Consider 01: A| + By and 05: Ay + Bs.

Their tensor, noted 01 ® 07: (A1 ® Ag) + (B1 ® By), is the strategy
defined with:

01 ® 02 S Z Z

g1€Isog(A1+B1) qp€lsog(Az+-By)

01(q1) 02(q2) - (11 ® A2) -

We now prove that this construction is a functor ® : PCGXPCG — PCG.

Indeed, we have the following lemmas regarding tensor:

Lemma 6.35 — Tensor and positions
Consider two arenas A; and A;. Then:

Pos(A; ® Ay) = Pos(A7) X Pos(Az).
Moreover, for any x; € Pos(A1) and x, € Pos(Az), we have:

Sym (x1 ® xo) = Sym (x1) X Sym (x2) .

Lemma 6.36 — Tensor and copycat augmentation
Consider x1 € Conf(A;), x € Conf(A;). Then:

Cx1®x7 = Cxy ® Ly, -

Copycat forces both side of the augmentation to be copies of the same
configuration, meaning that any copycat isogmentation (on A + A) can be

characterized simply by a position on A.
Lemma 6.37 — Support of identity
Consider an arena A, then
supp(ida) = Pos(A).
These lemmas allow us to prove that the tensor respects identities.
Lemma 6.38 — Tensor and identities
Consider A, B arenas. Then,

ida ® idg = idagB -

We have the following equalities:

ida®idg = Z

qelsog(ArA) pelsog(BrB)

(ida(q) X idg(p)) - (A ® p)

6.4 PCGisa SMCC | 125

Consider x1, y1 € Conf(A)
and x7, y» € Conf(Az), with a bijection

P:X1@X2=2Y1QY2.
We decompose @ in two isos @1, g2 with:

<p,':|x,~| i |yi|
e o fsteie)=(f)

We set a bijection

K: X € Pos(A) > @y € supp(ida) -

Similar to the proof of Propo-
sition 6.31, using the previous lemmas.

126 | 6 Composition and Categorical Structure

acy

®

=)
T o)
=)
=)

x€Pos(A) yePos(B) 1:tsym (X) X ﬁSym (y)

8
®

xePos(A) yePos(B) ﬁsym (X) X ﬁsym (Y)

(
(=
= 2 2 jijm(X)XﬂSym(Y)(
(

8

xePos(A) yePos(B)

8

- Z>1fiSym(><)><ﬁSym(y)

x€Pos(A) yePos(B

- Z Z ﬂSymix@ y) ‘ (CCX@J)

x€Pos(A) yePos(B)
1 —
zePos(A®B) ﬁsym (Z)

= idagB

by Definition 6.34 (tensor of strategies); Definition 6.20 (copycat
strategy) and Lemma 6.37 (support of the copycat strategy); preser-
vation of isomorphisms by tensor; Lemma 6.36 (tensor of copycat
augmentations); Lemma 5.8 (tensor of configurations); Lemma 6.35
(tensor and symmetries); Lemma 6.35 (tensor of positions); and
finally the definition of copycat again.

Likewise, we have the following property for tensor and composition of

augmentations:
For i =1,2, we set Lemma 6.39 — Tensor and comp., augmentations
0::b 9i b Pi . . .
irb€lxglmbhelxg | Consider g;: A; + Bj, pi: Ai + B; for i = 1,2, along with the
with b’ such that 8(i,b) = (i, b’). isomorphism:
Then L L1102 p1®p2
0: Xg o, =B188: Y, gp, -
xi LILa) - (1,Q1,a)
(1,2,0) = (2(1a) Then 6 can be decomposed into two isomorphisms
2,10) = (L@20)
2,2,0)) = (2,20) o P ~ P2
91 xBl =B, xBl and 62 sz =B sz

isan isomorphism between (Pl ® pz) Op
(71® q2) and (p1 ©g, 1) ® (p2 @0, 92)- such that:

(P11 ®p2) Oo (11®92) = (p1©e, 91) ® (P2 G0, 2) -

This translates to a property for strategies:

Similar to the proof of Propo- Lemma 6.40 — Tensor and comp., strategies
sition 6.31, using the previous lemma.

Consider 0;: A; + B;, 7;: A; + B; fori = 1,2. Then,

(1001)®(12002) = (1®T2) O (01®02) -

Using Lemmas 6.38 and 6.40, we obtain that ® is a bifunctor.
Proposition 6.41 — Functoriality of ®

The tensor ® is a bifunctor on PCG X PCG — PCG.

6.4.2 Structural morphisms — intuitively

Structural morphisms are all variations of copycat. As we did for copycat
itself, we start with concrete representatives. Consider A, B, C arenas,
and x € Conf(A), y € Conf(B), z € Conf(C). Recall that we write | for the
empty arena. Denoting the empty configuration on | with @, we set:

xX,Y,z

apc
XQD+Fx, [IyA:B]]

r®Y®z)F(x®Y)®z,
X®Yyry®x,

A) = o®xtx, (o
(pa)

and the corresponding augmentations are defined from these, augmented
with the obvious copycat behaviour.

We lift this to isogmentations: for x € Pos(A), A} is the isomorphism class
of Af\ ; and likewise for the others. Then the strategy A4 is defined as for
ida by setting:
e 1
ME D ——— A
x€Pos(A) ﬁSym (X)

and likewise for pa, apg,c and Yas.

Before proving that these structural morphisms satisfy the conditions
of Definitions 1.1 (monoidal category) and 1.2 (symmetric monoidal
category), we need a few more technical tools, which we introduce in the
next subsection.

6.4.3 Renamings

In order to handle the structural morphisms more easily, we introduce
renamings, which allow us to change the arena image of an augmentation
without modifying its structure.

Definitions. We start with renamings of arenas.

Definition 6.42 — Renamings on arenas

Consider arenas A and B. A renaming f € Ren(A, B) is a function
f:|A| = |B| such that:

minimality-preserving: a minimal for <a & f(a) minimal for <g,

causality-preserving: if a1 <a a then f(a;) <g f(ap).

We now define (co-)renamings on configurations.
Definition 6.43 — Configuration (co-)renamings

Consider x € Conf(A B), f € Ren(B,B’), g € Ren(A,A’). We
define the renaming of x by f, denoted f > x, as:

|f > x| |x|
Sfxx <x
8fm(: (1/ 8) — 8x((1,e))
2,e) > (2, f(b)) st. (2,b) = 24((2, ¢)).

6.4 PCGisa SMCC

127

128 | 6 Composition and Categorical Structure

Likewise, we define the co-renaming of x by g, denoted x < g, as:

lxe< gl = |«

Sxxg = <

dog © (Le) > (1, g(@) st (1,a) = dx((1, e))
(2,e) = (2,¢e).

By definition of configurations and (co-)renamings, we have:
Proposition 6.44
With x, f, g as above, we obtain:

f > x € Conf(A+B’) x = g € Conf(A" + B).

This allows us to define renamings on augmentations and isogmentations.

Definition 6.45 - Augmentation (co-)renamings

Consider g € Aug(A + B), f € Ren(B, B’), g € Ren(A, A’).
We define the renaming of g by f, denoted f > g, as:

(f = q) f>(q)

< <q -

Likewise, we define the co-renaming of g by g, denoted q ~ g, as:

(g=g) = @=g
qug = Sp 3

Again, by definition, we have:
Proposition 6.46
With g, f, g as above, we obtain:

f>=q € Aug(A+ B') g< g€ Aug(A’+B).

It is clear that (co-)renamings are invariant under isomorphism.
Lemma 6.47

Consider the augmentations q,p € Aug(A + B) such that g = p,
along with the renamings f € Ren(B, B") and g € Ren(A, A").

Then:
fxqg = fxp and geg = pxg.

Thus we unambiguously define isogmentation (co-)renamings.
Definition 6.48 — Isogmentation (co-)renamings

Consider q € Isog(A + B), f € Ren(B, B’), g € Ren(A, A”).
We define the renaming of q by f, denoted f > g, as:

fxq::fxg,

Likewise, we define the co-renaming of q by g, denoted q < g, as:

qb<g::9><g_

Finally, we can define renamings of strategies.
Definition 6.49 — Strategy (co-)renamings

Consider o: A + B, f € Ren(B, B), g € Ren(A, A').

We define the renaming of ¢ by f, denoted f > g, as:

fro= 27 o@-(f~=a).

q€lsog(A+B)

Likewise, we define the co-renaming of o by g, denoted o % g, as:
oxg:= >, o (axg).
qelsog(ArB)
Again, (co-)renamings of strategies are strategies:
Proposition 6.50
Consider o, f, g as above. Then:
f>xo:ArB oxg: A FB.

Now we can define structural morphisms using renamings — but before
that, we state a few technical lemmas.

Technical lemmas. Renamings have properties that will be useful for
proving that the structual morphisms indeed satisfy the definition of a
resource category. We state some of these properties here; most of the
proofs are immediate by definition.

Lemma 6.51 — Identity renaming
Consider g: A + B. Then:

idg~<0 = 0 = oxida.

6.4 PCGisa SMCC

129

130

6 Composition and Categorical Structure

Lemma 6.52 — Composition of renamings
Consider o: Ag I By, f1 € Ren(Boy, B1), f2 € Ren(B1, By). Then:

fox(fixo) = (faofi) 0.
Likewise, for any g1 € Ren(Ag, A1), $2 € Ren(A1, Az), we have:

(Oxgl)xgz = 0“(82081)-

Lemma 6.53 — Renaming of a composition

Consider6: A+B,7: B+ C, f € Ren(A,A’), g € Ren(C, C).

Then:
(too)xf =10 (0xf)

and
gx(t00) = (g=1)00.

Lemma 6.54 — Inverse renaming
Consider f € Ren(A, B). If f is invertible, then:

f=iday = idg < f'.

Lemma 6.55 - Composition with a renaming
Consider 6: A+ B, f € Ren(B, C) invertible, and 7: C D. Then:

10 (fxo) = (t=xf1)oo.

Lemma 6.56 — Renamings and tensors

Consider two strategies 01: A + C, 02: B I D and two renamings
f1 € Ren(C, C’), f» € Ren(D, D’).

We define the product fi X f as:

fixfr: (C®D) — (C'®D)
(i,e) > (i file).

Then:
(fixo1)® (x02) = (ixfo) <(01®0)) .
Likewise, for any g1 € Ren(A, A’), g2 € Ren(B, B’), we have:

(01 g1) ® (02% §2) = (01 ® 02) < (g1 X §2) -

Lemma 6.57 — Identity with an invertible renaming

Consider f € Ren(A, A’) a bijection.

Then f > ida and ida = f are isomorphisms.

The inverses are f ! < ida and ida = f 1. We can check that:

(f 1 xida) © (f <ida) = (ida < f) O (f <ida) (Lemma 6.54)
=ida © (f 1> (f =ida)) (Lemma 6.55)

= f1 > (f xida) (Lemma 6.30)
=(fof)xida (Lemma 6.53)
= ida (Lemma 6.51)

The other equalities are similar.

6.4.4 Structural morphisms — formally

We now give alternate definitions of the structural morphisms.

Associator. For any arenas A, B, C, we set the following renaming:

aapc: (A®B)®C — AQ®(B®C)
(1,(1,a)) — (1,a)
(1,(2,b)) = (2,(1,b))
(2,¢) — (2,(2,0)).

We define the associator app ¢ as:

@A B,C ‘= aaB,c ™ id(agB)sC -

Left-unitor. For any arena B, we set the following renaming:

ls: 18B — B
2,b) — b.

We define the left-unitor Ag as:

/\B = IB o id|®B .

Right-unitor. For any arena A, we set the following renaming;:

rpn: A®lI — A
(1,a) +— a.

We define the right-unitor pa as:

Pa = 1A X idag) -

6.4 PCGisa SMCC

131

132

6 Composition and Categorical Structure

Symmetry. For any arenas A, B, we set the following renaming;:
SAB: (A®B) — (B®A)
(La) = (29
2,b) = (1,b).

We define the symmetry ya g as:
YAB = SaB < idagB -
These morphisms behave like the intuitive definitions given in 6.4.2. We

can now formally check they satisfy the conditions of Definitions 1.1
(monoidal category) and 1.2 (symmetric monoidal category).

Remark that all renamings are bijective, which implies that the structural
morphisms are isomorphisms by Lemma 6.57.

We detalil the triangle identity:
Lemma 6.58 — Triangle identity

For any arenas A, B, the following diagram commutes.

aa,1B
A®)®B———— AR (I®B)

pA®idB\t 4/idA®/\B
A®B

For any arenas A, B, we have:

(idA ® /\B) O aa,B

= (ida ® (Iz > idigB)) © a8 (Definition of A)
= (ida ® (ids < 15')) © ane (Lemma 6.54)
= ((ida = ida) ® (idg < 15')) © @a, (Lemma 6.51)
= ((ida ® idg) = (ida X 15')) © a1 (Lemma 6.56)
= (ida ® idg) © ((ida X 1g) > aa | 8) (Lemma 6.55)
=idaes © ((ida X 1g) < arp 1 B) (Lemma 6.38)
= (ida X 1g) @ ap B (Proposition 6.31)
= (ida X 1g) (aA,LB > id(A®|)®B) (Definition of a)
= ((ida X 1g) 0 aa 1,8) > id(asieB (Lemma 6.52)
= (ra X idp) > id(agi)eB (%)
= (ra X idp) > (idag ® idg) (Lemma 6.38)
= (ra < idag)) ® (idg > idg) (Lemma 6.56)
= (ra > idagl) ® idg (Lemma 6.54)
=pa ®idp (Definition of p)

where (%) is a direct computation of both functions.

The other identities are very similar.

More generally, this construction
f € Ren(A,B) — f =ida € PCG(A, f(A))

is a strict monoidal functor between Ren and PCG, which means that the
structural morphisms of PCG are simply obtained by transport from Ren.
Hence all the coherence diagrams commute.

We still need to check all the morphisms are natural. We show the detailed
proof for one diagram.

Lemma 6.59 — Naturality of A
Consider arenas A, B. For any strategy o: A + B, we have
00 A = Ag0O(d®0) .

On the one hand, we have:

00 Aa
=00 (1 > idiga) (Definition of A)
= (o x1;') @ idiga (Lemma 6.55)
=0 1/_\1 (Proposition 6.31)

and on the other hand:

Ag O (id; ® 0)
= (Ig @ idigg) O (id; ® o) (Definition of A)
=1g > (idigg © (idi ® 0)) (Lemma 6.53)
=1 > (id ® 0) (Proposition 6.31)

Consider an isogmentation q € supp(o x l;l), then it is of the form
g=q x l;l with q” € supp(o) and it appears in ¢ x 1;1 with the
coefficient 6(q’). But a direct computation yields:

q’t><11,:1 =1z~ (0®q).

Hence, recalling that idy = 1 - 0 (with 0 the empty isogmentation),
we obtain:

Ig > (id; ® o)

> (@ (1= (0®q))
qesupp(0)

2. 0@ (ax1)
qesupp(0)
=0 X 1;1 . O

Again, the other naturality diagrams are similar.

6.4 PCGisa SMCC

133

134

6 Composition and Categorical Structure

We can now state our first theorem specifying the categorical structure
of PCG.

Theorem 6.60 — PCG is a SMC

(PCG, ®, I) is a symmetric monoidal category.

6.4.5 Closed structure
Recall the currying bijection A introduced in Subsection 5.3.4.
Definition 6.61 — Currying strategies

Consider arenas G, A and B. For any 0: (G® A) I B, we set

Aeap(o) = > a(q)- AIGS?E,B(Q) :
q€lsog(G®AFB)

This definition directly yields:

Acap: PCG(G®A,B) = PCG(G,A = B).

Moreover, we have the following property:
Lemma 6.62 — A preserves composition

Considerarenas G, G’, A, Band strategies 0: G®A - Band7: G’ - G.
Then, we have:

Agap(0)OT = Agap (0O (T®idp)) .

Computation of both sides of the equation, following the
definitions.

From this, we obtain the evaluation morphism with:

def -1 .
evag = Ay ap (ida=s) -

Altogether, these give us the closed structure of PCG.
Theorem 6.63 — PCG is a SMCC

(PCG, ®, 1) is a symmetric monoidal closed category.

PCG is a SMC by Theorem 6.60. For any arenas G, A, B and
morphisms 0: G® A+ Band 7: G+ A = B, we have the following
equalities:

evapg O (Agas(0) ®ida) (6.4)
AG,A,B (EVA,B © ("C ® idA)) = T (6.5)

1]
Q

which follow from a direct computation.

6.5 From qualitative PCG to HO

6.5 From qualitative PCG to HO

We show that the earlier isomorphisms between isogmentations and
quotiented plays extend to strategies and composition. For this section,
we consider the qualitative version of PCG, where strategies are sets of
isogmentations without coefficients.

Recall that we have the following isomorphism (Figure 3.17):

isog(-)

—
VisPlays™(A),., = lIsog(A)

~_

Plays(—)

for plays quotiented by Mellies” homotopy equivalence and isogmenta-
tions. Furthermore, we defined Meagre Innocent Isogmentations as —-linear
isogmentations (Definition 3.29), and we saw that these were in bijection
with innocent strategies in HO (Figure 3.23):

MII(-)
— ™

HO;?”(A) = MII(A)
\/

HOstrat(—)

Finally, we defined Fat Innocent Isogmentations (Definition 3.45), which
are the isoexpansions of a mii, corresponding to the set of plays of an
innocent strategy in HO (Figure 3.25):

HOI™ (A) MIG), pxa)

isog(—)\‘ JGXP(—)

FII(A)

We present the constructions for finite innocent strategies in HO;
one could consider co-isogmentations for the general case.

Now, we want all these isomorphisms to still preserve the categorical
structure of PCG: in particular, that the identities coincide, and that the
composition is compatible with the isomorphism Plays(-).

6.5.1 Arrowing

In Chapter 3, we studied the link between plays and isogmentations
for a fixed —-arena A. But what happens when we want to consider a
strategy o: A + B, for A, B —-arenas? Since A + B is not negative, it is
not an HO arena, hence we need first to turn o: A + B into a strategy
A=(0): A= B.

This is a particular case of the curryfication.

135

136 | 6 Composition and Categorical Structure

2: Recall that we consider the qualita-
tive version of PCG here, hence why we
define A= (0) as a set of isogmentations.

For g € Aug(A), we have:

def

Plays(q) = {dq(t) | t € Alt(q)}
(see Definition 3.24). For q € Isog(A):

Plays(q) &« Plays(q)

and finally for any o C Isog(A):

Plays(o) e U Plays(q) .

qeo

Definition 6.64 — Arrowing of augmentations
Consider g € Aug(A + B). We define A= (g) with:

A= (@l = 4l
a <(A=(q) b iff (11 <(q) b) or (a = init(b))
asp=@b iff a<,;b
(2,b) if d;(a) = (2,b),
In=i@(@) = (L, (bc) ifdg(a)=(1,c)
and d,(init(a)) = (2,b).
Then A= (g) € Aug(A = B).

Clear by definition and Lemma 5.13.

Proposition 6.65 — Arrowing isomorphism
We have an isomorphism
A~ : Aug(A + B) = Aug(A = B).

We write A" for the reverse isomorphism.

This construction clearly preserves isomorphism, hence we define

def

A7(@) = A=()
for any q € Isog(A + B).

Finally we extend A= (-) to s’trategies2 with, forany o: A+ B,

def

A=(0) = {A7() | g€ a}.

6.5.2 Plays™(—) and innocent strategies

Now we can define the plays of strategies on A I B.
Definition 6.66 — Plays™=(—)
Consider o: A + B, then we define
Plays=(0) £ Plays(A=(0)).
Be careful: in general Plays™ (o) is not a strategy in HO! Indeed, strategies

in PCG are sets of isogmentations, and there is no condition of non-
emptyness, prefix closure, or determinism.

As before, we need to consider innocent strategies. Recall that innocence
in PCG is characterized by being a FII i.e. the set of isoexpansions of a
—-linear isogmentation (Definition 3.45). Thankfully, A= (—) preserves
this property.

6.5 From qualitative PCG to HO | 137

Lemma 6.67 — A= (—) preserves FlIs
Consider o: A + B. Then,
o €FII(ArB) & A7(o)€ FII(A=> B).

Only if. A= (—) preserves isomorphisms, so if ¢ = iexp(q) for
some —-linear q, then A=(q) is —-linear and A= (o) = iexp(A=(q)).

If. Likewise, if A= (o) = iexp(p) for some —-linear p, then A" (p) is
—-linear and o = iexp(A"(p)).

Hence all the isomorphisms between PCG and HO presented in Chapter 3
still stand.

6.5.3 Identities

We now prove that Plays™ (—) preserves identities.
Proposition 6.68 — Plays= (—) preserves identities.

Consider an arena A. Then,

HO

~(ida) = ccpy” .

Plays
We start with the inclusion Plays™ (ida) C cci®.

Consider s € Plays™ (ida). Unfolding the definitions, we have:

Plays™ (ida) = Plays(A™(ida))
= U Plays(q)

qeA=(ida)

= |J Plays(A=(a))

qeida
U Plays(A= (ay))

x€Pos(A)

U {onme® | te A= (@)} -

x€Pos(A)

Consider x € Pos(A), § := A7 () and t :=t;...t, € Alt(g) such
that s = d,(t). We know that s € Plays(A = A).

Let us first prove condition (1) of the definition of cc?o. We prove by
induction on s’ that for any s’ C* s, we have s’ [Ay = s’ [A,., where
we use indices to distinguish between the two copies of the arena A.

The equality is clear on the empty case, so consider s”s; s',; C* s.
By induction, s’ [Ag = s’ I A,. Moreover, we know that t; — tl.++1,
so by Lemma 3.22 we have t; — tiy1. But A= preserves the causal
order, so we also have ti —xr(g) ti+1. Since A(q) = ccy, we use
Lemma 6.28 to conclude that t; and t;4; correspond to the same
event in A, but from both side of the arena A = A, thus proving that
s's7 s/ A =5"s7s! | I A. (where the pointers are also equal, by
definition of < ,)).

(Definition 2.22) s € cchi© iff:

1 Vs’C%s,s" [Ar=5s" A,
2. ifs;, sitf1 are minimal in A, then
Si+1 points to s;.

138

6 Composition and Categorical Structure

Now, we prove the second condition of the definition of ccxo.

Consider s7, s, minimum in A, by negativity of A we have

9,(t7)=(2,a) and J,(t/,,)=(1,(a,a)) withae min(A).

So t; is minimal for < @ and thus for <4 by minimality-preservation.
Moreover, by Lemma 3.22, we have t7 —y t;“H. Since A= preserves
the causal order, we actually have

ti € min(sAp(q)) and t; —>Ar(g) tiv1,

so by Lemma 5.13 we obtain t; = init(tj+1). Thus, by definition of A=,
we have
ti =g tiv,

and s;41 points to s; as needed.
Hence, Plays™ (ida) C CCKO. We now prove the reverse inclusion.

Consider s € cci{9. We need to find g € Aug(A + A) such that
geida and s e PlaysT(q).
Consider g := A"(aug(s)). Then it is clear that:
g€ Aug(A+A) and s € Plays™(q),

so we only have to check that g € ida, i.e. we want § = @ for some
x € Pos(A). Since s € Plays(A = A), the restriction s [A,. informs a
position x € Pos(A). Indeed, consider the configuration x with:

x| = {1,...,p} withp thelenghtofs ['A,,
i—yxj iff (s [A);pointsto(s [A);.

Then x € Conf(A), and we set x := X. We show that q = a,, with
the isomorphism:

&gl — eyl
i = (4,])st.s;€(sA,)ands; hastheindexjins [A,.

The isomorphism between event sets, static orders and display maps
is clear from the fact that forany s’ C* s, s’ [Ay = s’ [A,. For the
causal order, we have:

(a) Let us prove that i~ —, k* iff k = i + 1. We know that s; and
si+1 correspond to the same event in both sides of A = A. Hence, if
&) =(3,]), then&(i+1) = (47, j) with o’ # 3, and (i) —¢, E(I+1)
by Lemma 6.28. Reciprocally, if (4, /)~ —«, (37,j)*, then by Lemma
6.28 3 # 4’ and j = j/, and clearly £1(s,j) = E71(4,j) + 1.

(b) Let us prove that i* —; k™ iff s points to s;. Since both
restrictions of s to Ay and A,. are plays, s¢ points to s; implies
that both moves are played in the same side A; of A = A. So
&(i) = (4,]) and &(k) = (4, j); and the pointers are preserved, so
(3,7) =, (3,j). Reciprocally, (4,]) —e, (37,j) iff 3 = 4" and
jex i EN(3, 1) =g £,) U

6.5 From qualitative PCG to HO | 139

6.5.4 Composition

We now prove that Plays™ (—) is compatible with the composition.
Proposition 6.69 — Plays™(—) and composition

Consider A, B and C arenas; and two strategies o: A + B and
7: B+ C. Then,

Plays™ (7 ® ¢) = Plays™ (1) ©"° Plays™(0).

One of the inclusion is easy: given an interaction between two plays, we
can construct an isomorphism between the corresponding augmentations.

Lemma 6.70 — Plays™(—) and composition, part 1
Consider A, B and C arenas with 6: A+ Band 7: B + C. Then:
Plays™ (1) ©"° Plays™ (o) C Plays™ (1 © o).

Consider s € Plays™(7) ©"° Plays™(c). Then s € s* ©HO 59
for some s* € Plays™ (1) and s° € Plays™ (o). In other words, there
exists an interaction u € I(A, B, C) such that:

ulAB=sg’ ulB,C=s" ulAC=s.

Hence there exists 4 € g € A= (0) (resp. p € p € A= (7)) with the
linearisation t° (resp. t*), such that:

$7=9,(t) and 5T =d,(Y).

Moreover, the events occuring in B in s” and in s are compatible,
and we can define an isomorphism ¢: x4 =g xpg through u. It
is clear that such a ¢ is a configuration isomorphism, since the
constructions d,(t”) and d, (t*) preserve pointers and arena image.
So, we can consider r = A"(p) ©, A"™(q), and we have s € Alt(r).

The other inclusion is not so easy, because we need to build a sequential
interaction from the isomorphism. In other words, given an alternating
play s € Plays™ (7 © o), we must prove that s can only come from the
composition of two alternating plays in Plays™(¢) and Plays™ (7). The
problem is that we only know that s is obtained from the composition of
some augmentation in o and some augmentation in 7, but it is not clear
how we can linearise them and construct an interaction.

To do so, we need additional lemmas on polarity, and the notion of states
of augmentations and interactions.

Definition 6.71 — State of an augmentation

Consider an augmentation g € Aug(A). A state of g is X C |q|
which is down-closed for <.

140 | 6 Composition and Categorical Structure

Remark that a state of g € Aug(A) is almost an augmentation on A (with
orders and display map inherited from ¢), save for the +-coveredness
condition which might not be respected. Thus the definition of alternating
linearisations can easily be extended to states.

Definition 6.72 — Alternating linearisation of a state

Consider g € Aug(A) with a state X. An alternating linearisation
of X is a total order on the events of X, noted t = t;...t, with
{ti| 1 £ i < n} = X, such that:

polarity-alternating: Vi < n, pol(t;) # pol(ti+1) -
causality-respecting: Vi<n, ti <gtiv1.

We write Alt(X) for the set of alternating linearisations of X.

° " ° However, because states are not always +-covered, they might not have

alternating linearisation! Take the augmentation on Figure 6.10 for in-
+ stance, with the state X. The linearisation obviously fails because X has
. X two negative events and no positive event.

In general, we can observe that an alternative linearisation must either
Figure 6.10: An augmentation g witha ~ have the same number of positive and negative events, or just one more
state X. negative event (because the arenas are negative, so the first event is
always negative). This leads us to define O-states and P-states.
If X C |ql|, we write:
X" :={a € X | poly(a) = -}, Definition 6.73 — O-states and P-state

X|* = X | =+}.
X" ={acX] poly(a) = +} Consider an augmentation g € Aug(A).

An O-state of g is a state X such that #| X|~ = #|X|*.
A P-state of g is a state X such that §| X|™ = §|X|* + 1

Not only is it clear that a state accepting an alternating linearisation must
be an O-state or a P-state, depending on its size; but we can actually
prove that all O-states and P-states have alternating linearisations.

Lemma 6.74 — Linearisation of states

Consider an augmentation g € Aug(A) with a state X. Then:

» X is an O-state if and only if it has an even-length alternating
linearisation.

» X is a P-state if and only if it has an odd-length alternating
linearisation.

We construct an alternating linearisation inductively on
the size of the state, proving that all O/P-states have alternating
linearisations.

If X = 0. Immediate.

If §X = 2n + 1. Then X is a P-state, and §|X|~ = §|X|* + 1. For
any event a € X, we call successors in X of a the events of X
immediately following a in <;, noted succx (a). We know that every

6.5 From qualitative PCG to HO

negative event of X has at most one successor by determinism,
so since #|X|™ = #|X|* + 1, every negative event has exactly one
successor except one, which we will call a. Since a has no successor,
it is maximal in X. Thus we can remove it, and X\{a} is still down-
closed; so it is an O-state of g of size 2n. By induction hypothesis,
we construct an even-length alternating linearisation of X\{a}, and
then add a at the end of the linearisation.

If #X = 2n + 2. Then X is an O-state, and §|X|™ = #|X|* < 1.
Hence any negative event has exactly one successor. Take any event
b* positive maximal in X. Then X\{b} is still down-closed, so by
induction hypothesis it is a P-state of g of size 2n + 1. Thus it has
an alternating linearization, which must end with a negative event
a~. Moreover, this last event is the only negative event of X\{b}
without a successor. Hence b € succx(a), and we can add b at the
end of the linearisation.

We now define states for the interaction of two augmentations. Consider
two augmentations g € Aug(A + B) and p € Aug(B + C), with the
isomorphism @: x,8 =g X, 8. Forany X C [p ®,, q|, we write:

XTAC={(1,e)eX|d4(e)=(1,a}U{(2,e) € X|dy(e) =(2,0)},
XTAB;={e|(1e)e X},
X 1B, By ={(1,e) € X| dy(e) = (2,b)} U{(2,¢) € X | dy(e) = (1,b)},
X 1By, C={e|(2,¢) € X}.

Then, we have:
XTACClpoyql X TA,B;Clgl X 1By, CClpl.

We say that X [By, B, is a state of ¢ if it is down-closed for < restricted
to events occuring in B; in that case we define O-states and P-states as in
Definition 6.73, following the polarities of B; - B).

A subset of an interaction X C |p @, g| can thus yield up to four different
states: a (potential) state of p ©, ¢, one of g, one of ¢ and one of p —and
each of these states can be an O/P-state.

Definition 6.75 —- KLMN-states of an interaction

Consider q € Aug(A + B), p € Aug(B + C), and ¢: x418 = X8

A KLMN-state of p ®, ¢, for KLM,N € {O,P}, is X C [p &, 4]
down-closed for <*, such that:

1. X T A,CisaK-state of p Oy g,
2. X [A,B;isaL-state of g,

3. X [By, By is a M-state of ¢,
4. X | By, Cis a N-state of p,

Thanks to these polarities we can finally describe the linearisation needed
for the proof of Proposition 6.69.

141

142 | 6 Composition and Categorical Structure

Figure 6.11: Polarities of an interaction

b)* by
p(b1) - 2
c*l Tc‘
| POPO| 0000 | | POPO|

Lemma 6.76 — Polarities of an interaction

Consider g € Aug(A + B), p € Aug(B + C), ¢: x418 =B Xp18, and
X a KLMN-state of p &, q, with t an alternating linearisation of
X A, C.

Then X has a linearisation ¢ following the diagram of Figure 6.11
(where a™ is an event occuring in A and with polarity + in A), such
that ¢ [A,C =t, and we are in one of the following cases:

1. X I'A,Cis an O-state. Then X is an OOOQO-state.
2. X ['A,Cis a P-state. Then we have three cases:

a) X is a PPOO-state.
b) X is a POPO-state.
c¢) X is a POOP-state.

We prove the lemma by induction on the size of X. If X is
empty, it is an OOOO-state. Otherwise:

1. If X ' A, C is an O-state, consider ¢ = max(t). Since X | A,C
is an O-state, ¢ must be positive in A + C. By courtesy, e is
maximal in X. Indeed, assume ¢ is not maximal in X, then
there exists b € X such that e —4 b with e* occuring in A
or C and b~ occuring in B, contradiction. So X\{e} I'A,C is
a P-state, and by induction we are in the second case of the
lemma.

a) If e occurs in A, then X\{e} I' A, B; is a P-state, and by
LH. X\{e} is a PPOO-state. Hence, X is an OOOQO-state.
b) If e occurs in C, then X\{e} I B,, C is a P-state, and by
H.I X\{e} is a POOP-state. Hence, X is an OOOOQ-state.

2. If X I' A, Cis a P-state, consider e = max(t).

a) Ifeisalso maximalin X and occursin A, then e isnegative
inA+ C,ie. positive in A, and X\{e} I' A, C is an O-state.
By induction hypothesis, X\{e} is an OOOO-state. So X
is a PPOO-state.

b) If e is also maximalin X and occurs in C, then e is negative
in A+ C,i.e negativein C,and X\{e} ' A, C is an O-state.
By induction hypothesis, X\{e} is an OOOO-state. So X
is a POOP-state.

¢) If e isn't maximal in X, then there exists a b maximal in
X, such that ¢ <* b and b occurs in X.

i. If b is negative in B and occurs in By, then it is

6.5 From qualitative PCG to HO

negative in A + B and positive in By F Bp. So, by
induction hypothesis, X\{b} | A, B; is an O-state
and X\{b} | B;, B, is a P-state, which means X\{b}
is a POPO-state. So X is a PPOO-state.

ii. If b is negative in B and occurs in By, then it is
negative in B; + B, and positive in B, + C. So, by
induction hypothesis, X\{b} I B;, By is an O-state
and X\{b} [B,, C is a P-state, which means X\{b}
is a POOP-state. So X is a POPO-state.

iii. If b is positive in B and occurs in By, then it is
positive in A + B and negative in B; + By,. So, by
induction hypothesis, X\{b} [A, B is a P-state and
X\{b} | By, By is an O-state, which means X\{b} is
a PPOO-state. So X is a POPO-state.

iv. If b is positive in B and occurs in By, then it is
positive in B, + B, and negative in B, + C. So, by
induction hypothesis, X\{b} [B;, B, is a P-state and
X\{b} I By, Cis an O-state, which means X\{b} is
a POPO-state. So X is a POOP-state.

In each case, we can check that the inductively constructed lineari-
sation ¢ follows Figure 6.11 and that ¢ [A,C = 1.

Now we prove the reverse inclusion of Proposition 6.69.
Lemma 6.77 — Plays= (—) and composition, part 2
Consider A, B and C arenas with 6: A+ Band 7: B + C. Then:
Plays™ (7 @ ¢) C Plays™(7) ©"° Plays™ (o).
Consider s € Plays™ (7 © ¢). By definition there exist

pEG, pzp/ rET/ r=[/ (P:xprB EBx}’rB/

with g = A7 (r ©p p) and t € Alt(q), such that s = dy(t). We want to
prove that
s € Plays™ (1) ©"° Plays™ (o).

More precisely weneed plays s° € Plays(A=(p))and s™ € Plays(A=(r)),
along with an interaction u € I(A, B, C) such that

ulAB=3s7, uB,C=5s", ulAC=s.
This interaction will be constructed thanks to Lemma 6.76. Consider
X =|AT(r®, p)l =r &, pl

Then X is an OOOQO-state of r ®¢ P, and t is an alternating lin-
earisation of X [A, C (since A= (—) does not change polarities). By
Lemma 6.76, there exists a linearisation ¢, following the diagram of
Figure 6.11, such that ¢ [A, C = t. Since ¢ follows the state diagram
(and 0, X are OOOO-states), events in B must occur in pairs: any
event (1, b) occuring in B;; is followed by (2, ¢ (b)) occuring in B,,
and likewise any event (2, b) occuring in B; is followed by (1, ¢ (b))

143

144 | 6 Composition and Categorical Structure

Proposition 3.47 actually gives
us the isomorphism for plays quotiented
by homotopy, but since Plays™(-) re-
turns plays we drop the quotient here.

occuring in B,. Hence, we construct ¢” where we consider pairs of
events occuring in B, and the corresponding interaction u, where
pointers follow — A=(p) and —»A=,. By construction, we have:

u I'A, B € Plays(A= (p)) u B, C € Plays(A=(r)) ulA,C=s
as required.

Hence Plays™(—) is compatible with the compositions. Since the com-
position in HO games preserves innocence, we can deduce that the
composition in PCG also preserves innocence (i.e. being a FII).

6.5.5 Functor between PCG and HO

We are now able to properly state the correspondance between the two
Inn

categories Fll the category of FlIs in PCG and HO i the category of finite
innocent strategies in HO.

Proposition 6.78 — Functor between PCG and HO

There is a functor:

Plays™(-): Fll — Ho';”.

For any o € FII(A + B), we have Plays™ (o) € HO?”(A = B)

by Lemma 6.67 and Proposition 3.47. We conclude with Proposi-
tions 6.68 and 6.69 for identity and composition respectively.

The construction for the general functor between PCG and possibly
infinite innocent strategies is not detailed here. The idea is to define
infinite augmentations and isogmentations (again, one can think of them
as infinite “trees of P-views”) and then work mostly with finite prefixes
of infinite augmentations; hence the actual proofs are not so different.

Cartesian Structure. Recall that in PCG, for any arenas A and B, the
projections 74 and Tg are strategies with a copycat-like behavior on
A® B+ Aand A® B + B. They correspond exactly to i and n5°.

Lemma 6.79 — Preservation of projections
For any arenas A, B, we have:

Plays™ (1) = {° and Plays™(mg) = mg° .

The proof is very similar to the one for Proposition 6.68.

Closed Structure. Recall the isomorphism in PCG:

Apgc: PCG(A® B,C) = PCG(A,B = C).

6.6 Conclusion and perspectives

Likewise, in HO the currying isomorphism is:

ARQ 1 HO(A®B,C) = HO(A,B = C),

We show that Plays™ (—) is compatible with the curryfication.
Lemma 6.80 — Preservation of curryfication
For any 0: A® B I C, we have:
Plays™ (Aag,c(0)) = AE%’C(PIaysﬁ(o)).

By computation; both curryfication morphisms behave in
the same way.

Recall that the evaluation in PCG is defined by:

def

evap = A;;B,A,B (idAﬁB) € PCG((A = B) ®A, B) .

Likewise, the evaluation in HO is:

-1
def
el = (Mg as) (ccis) €HO(A=B)®A,B).

From the previous lemmas, we directly obtain:

Plays™ (evag) = ev:c,’3)

All in all, we have a strict cartesian closed functor.

Theorem 6.81 — Strict cartesian closed functor

Plays= (—) is a strict cartesian closed functor between Fll and HO'}’”.

6.6 Conclusion and perspectives

We enriched the game model PCG with composition, allowing us to study
its categorical structure. For now, we showed that PCG is a SMCC - in
the next chapter we define resource categories, which are better suited to
express what interest us in the structure of PCG.

We also established a strict cartesian closed functor between PCG and HO,
building upon the isomorphisms from Chapter 3. This correspondance
only focuses on the qualitative aspect of PCG; the natural follow-up
question would be about the significance of the coefficients in HO.

145

Resource Categories

Resource categories intend to capture the categorical structure of pointer
concurrent games. The aim is to obtain a categorical framework enabling
the characterization of morphisms behaving “linearly”, to show that these
morphisms in pointer concurrent games are in bijection with normal
terms of the resource A-calculus; and also to structure the interpretation of
resource terms as strategies, to prove invariance under reduction.

We start by giving the definition in Section 7.1, as well as some useful
properties in Section 7.2. We focus on the interpretation and its soundness
in Section 7.3 — in Chapter 8 we will prove that PCG is indeed a resource
category. Finally we give an example of the construction of a resource
category from a differential category (more exactly a monoidal storage
category) in Section 7.4.

7.1 Definition

Before the actual definition, we give some of the intuitions behind the
main components of a resource category:

» Composition in games generates sums of isogmentations; likewise,
substitution in the resource calculus generates sums of terms.
Hence, resource categories have an additive structure.

» Resource terms are built using multisets of terms; we would like a
way to “flatten” multisets of morphisms into one morphism. This
operation is constructed via a bialgebra structure.

» Resource categories are not linear, because strategies, the mor-
phisms in pointer concurrent games, do not have a linear behavior
in general. However, we want to characterize the morphisms that
do behave linearly — because they correspond to resource terms.
This is achieved using the pointed identities morphisms.

7.1.1 Additivity

We call additive categories that are enriched over commutative monoids'.

Definition 7.1 — Additive SMC (ASMC)

An additive symmetric monoidal category (asmc) is a symmetric
monoidal category (see Definition 1.2) where each hom-set is a
commutative monoid, with an addition + and a zero 0, such that
composition and tensor distribute over the additive structure:

ho(f+g)ok=hofok+hogok
he(f+9)®k=h®fk+h®¢®k

hoOok=0
he0®k=0

for any morphisms k, f, g, h.

7.1
7.2

7.3

7.4

7.5

Definition. 147
Properties of resource
categories 151
Interpretation and
Soundness 158
How to build your own
resource category 165
Conclusion and perspec-
tives 172

1: We follow the definition of [7, Sec-
tion 2], which differs from the one given
in [32].

[7]: Blute, Cockett, and Seely (2006), ‘Dif-
ferential categories’

[32]: Mac Lane (1971), Categories for the
Working Mathematician

148 | 7 Resource Categories

(a) Multiplication and co-multiplication. (b) Unitor and co-multiplication.
(c) Multiplication and co-unitor. (d) Unitor and co-unitor.

Figure 7.1: Bialgebra laws.

2: Thename pointed identity comes from
the particular case of pointed identities
in the resource category of pointer con-
current games: tree-like augmentations
corresponding to linear morphisms in
games are called pointed, because their
forestial structure has a unique root.

7.1.2 Bialgebras.

Resource categories are equipped with bialgebras, which are a monoid
and a comonoid with coherence laws between the two structures.

Definition 7.2 — Bialgebra

Consider C an additive symmetric monoidal category.
A bialgebraon Cis (A, 64, €a, pa, na) with

» (A, pa,na) a commutative monoid (see Definition 1.5),
» (A, 04, ¢c4)a commutative comonoid (see Definition 1.7),
» and additional bialgebra laws presented in Figure 7.1.

In resource categories, every object has a bialgebra structure. Intuitively,
comonoids (A, 04,14) are a way to represent duplications and duplicable
objects: if a request is made on the output of 64 on either side of the
tensor, the request is forwarded to its input. Monoids (A, pa, €4) reflect
the sums coming from compositions of strategies: requests made on the
output of p4 are forwarded non-deterministically to its input on either
side of the tensor.

7.1.3 Pointed Identity

Finally, we wish to characterize morphisms that “behave linearly” (in
pointer concurrent game, they correspond to singleton multisets of tree-
like augmentations, using their argument exactly once). To do so, we
introduce a morphism called pointed identity, which acts as an identity

only for “linear morphisms”?.

7.1 Definition

for T4

Figure 7.2: Laws for (co)multiplication and pointed identity

Definition 7.3 — Pointed identity

Consider 6 an asmc where each object has a bialgebra structure.
For any A, a pointed identity is id} € 6(A, A) satisfying:

idempotent: id5 oid’, =id}
non-erasable: eaoidy =0
non-erasing: id} ona =0

and the equations of Figure 7.2.

The equations of Figure 7.2 express the following properties of id5:

» non-duplicable: the post-composition with the co-multiplication 6 4 is
the sum of “id’, takes a request from the left-hand side of the tensor’
and “id% takes a request from the right-hand side”, but no situation
in which id:q takes requests from both sides simultaneously;

» non-duplicative: the pre-composition with the multiplication 4 is
the sum of “id% forwards a request to the left-hand side of the
tensor” and “id% forwards a request to the right hand side” but no
“id*, forwards the request to both sides”.

7

This “strongly linear” behavior of id® will allow us to characterize linear
morphisms: those which are invariant by composition with the pointed
identity.

Definition 7.4 — (Co-)Pointed Morphisms

Consider A, B in an asmc € equipped with bialgebras, and the
pointed identities id% and idj.

Then f € 6(A, B) is pointed if id} o f = f. We write f € 6.(A, B).
Dually, f is co-pointed if f oid% = f. We write f € 6°*(A, B).

Intuitively, pointed morphisms are morphisms behaving linearly for
the substitution: they can only be used exactly once. Dually, co-pointed
morphisms are morphisms behaving linearly with their arguments: they
require exactly one resource.

7.1.4 Resource Categories

We can now define resource categories.

149

150 | 7 Resource Categories

Figure 7.3: Compatibility of (co)monoids with the monoidal structure

Definition 7.5 — Resource Category

Consider an asmc 6. It is a resource category if each object A has a
bialgebra structure (A, 04, €4, L4, 14) with a pointed identity id5,,
and bialgebras are compatible with the monoidal structure of € in
the sense that the morphisms satisfy:

co-unitor with tensor: EasB = A1 0 (64 ® €B)
unitor with tensor: NA®B = (’YA ® T]B) o Ar
(co-)unitors with unit: & =nr = idr

and the equations of Figure 7.3.

Resource categories offer an interpretation of the resource calculus, in
which (singleton multisets of) terms are pointed morphisms. Linearity
here is characterized using pointed identities; but linearity can also be
linked to differential categories. Pointed identity laws are very similar
to the dereliction and codereliction morphisms laws which occur in
differential categories, which will guide us in our construction of a
resource category in Section 7.4.

7.1.5 Closeness

Since we are interested in interpreting typed A-terms, we want some kind
of currying isomorphism. Hence we consider closed resource categories.

Definition 7.6 — Closed resource category

A resource category 6 is closed if for all A € 6, the endofunctor
— ® A has a right adjoint A = —.

The currying is the natural (in A, B, C) isomorphism:
Aapc: BA®B,C) = 6(A,B=C).

For all A, B, the evalutation morphism is:

def — q
evap = AyLp 4 5 (idasp) -

We ask that the currying isomorphism is compatible with pointed
identity in the following sense, for all A, B:

id:4:>B = Aa=B,AB (idl.3 OeVA’B) .

7.2 Properties of resource categories | 151

7.2 Properties of resource categories

7.2.1 Constructions

We first give a few additionnal constructions in resource categories,
which will be useful both for the interpretation of resource calculus and
for describing the categorical structure of PCG.

Union. Strategies in pointer concurrent games are sums of augmenta-
tions, and augmentations have a forestial structure: they are, in a way,
finite multisets of tree-like sub-augmentations. This matches the fact that
in resource calculus, terms are applied to multisets of terms instead of
terms. Bialgebra morphisms allow us to formalize this intuition and to
flatten any multiset of morphisms into a single morphism.

For any morphisms f, g: A — B, we define their union as:

frg=upo(f®g)odaeB(A,B),
capturing the idea of the union of the multisets f and g.

Moreover, we define the union of the empty multiset as:

1ap Engoes € (A, B).

With these definitions, (6(A, B), #, 14,p) is a commutative monoid (and
®|(A,B) is a commutative semiring, where the composition and the
tensor only preserve the additive monoid).

Since = is associative, we unambiguously define the n1-ary union: given a
multiset of morphisms f = [fi,..., fu] in Mlf(B(A, B)), we set:

IIf = fis...+f, €6(A,B).

Hence, we send multisets of morphisms to single morphisms via IT.

Remark that this construction matches ITigog[—], the “flattening” of a mul-
tiset of isogmentations on the same arena into a single isogmentation.

Tupling. Likewise, we would like a construction matching (—)isog, the
tupling of a sequence of isogmentations on some arenas I' - A;’s into an
isogmentation on the arena I' - A®.

For any objects A, B, C with morphisms f: A — Band g: A — C, we
define their tupling:

(£, L (F®g)odaecCA,BRC).

This ressembles the product in cartesian categories; in the same way, we
define the tupling projections:

Ty d=epr0(idA®€B) € 6(A®B,A)
7, & Apo(ea®idp) € 6(A® B, B)

Figure 7.4: Union.

A

(&)
s = (F) ()

B C

Figure 7.5: Tupling.

152

7 Resource Categories

In case of ambiguity, we write (n’;’B,). We might also occasionally

use the notations (711, 712) or (714, Ttg).

However, this is not a cartesian product! We do not have 7y o (f, g) = f
in general — indeed, this only holds if g is erasable, i.e. if ec 0 g = €a.
Likewise, (f,g) o h = h only holds if h € €(D, A) is duplicable, i.e. if
daoh =(h® h)o dp (see Subsection 7.2.3).

Again, we extend the definition to the n-ary tupling; given morphisms
(fi:A— Bi)lsisw we set:

def

froeees fu) = fare oo fud) €6(A,B1®...®By)

with the projections 7t;’s constructed in the obvious way.

Packing. In the next section, sequences and bags are interpreted as
actual tuples and multisets rather than directly as morphisms in 6. To
compose bags we “flatten” them via the union; likewise for sequences
of morphisms we might use the tupling to see the sequence as a single
morphism. Putting these two construction together, we define the packing
of a sequence of bags of morphisms. Given the sequence]? =(fi, -, fn)
with multiset f; € M f(€(A,B;))) forany 1 < i < n, we set:

def

() E(1If, ..., TIF,) €G(A,B1®...®By).

7.2.2 Bags of pointed morphisms

One of the key properties of resource calculus is the fact that the sub-
stitution creates sums of resource terms, following the multiple ways of
splitting a bag of terms. In resource categories, terms are interpreted as
pointed morphisms, and bags of terms as bags of pointed morphisms,
flattened via the union operation when needed. Hence, we need to study
the categorical equivalent of splitting a bag of terms: how does the union
of a bag of pointed morphisms behave when we try to “split” it into two
(or several) morphisms?

The key property derived from the definition of resource categories
expresses how the product of a bag of pointed morphisms interacts with
the comonoid structure — and dually for product of a bag of co-pointed
morphisms and monoids.

Lemma 7.7 — Key Lemma

Consider 6 a resource category, then:
1. For any bag of pointed morphisms f € . 7(Ba(A, B)),

a) the diagram of Figure 7.6a commutes;
b) we have eg o I1f = 1if f is empty, 0 otherwise.

2. For any bag of co-pointed morphisms g € Jls(€°(A, B)),

a) the diagram of Figure 7.6b commutes;
b) we have Il o n4 = 1if g is empty, O otherwise.

7.2 Properties of resource categories

0A UaA
A—AQA A®A A
If Ziafup A @IS Zgaging 1131 @ 1122 I3
B——B®B B® B———8B
OB UB
(a) Pointed morphisms and comultiplication. (b) Copointed morphisms and multiplication.

Figure 7.6: Interaction of bags with the (co-)monoid structure.

1. Consider a bag of pointed morphisms f € Jl¢(6.(A, B)).
a) We reason by induction on the size of f.

If f is empty, then by definition I1f = np o 4. Moreover, the only
2-partitioning of [] is [] <[] * []. Hence, we have:

> NAeIf = O[] = (nsoea)® (npoea) . (7.1)
fafirfa

Using bialgebra laws (Figure 7.1), we compute:

° &%

And by (7.1), we obtain exactly the diagram of Figure 7.6a.
Iff =[f,..., ful withn > 1, let us write h= [f2) o) ful
Then T1f = f; + [Th, and we compute:

S

using the exchange rule of bialgebra (Figure 7.1) and the fact that f;
is pointed.

(=)

153

154 | 7 Resource Categories

From the laws of pointed identities (Figure 7.2), we get:

Using the fact that fi is pointed and a bialgebra law (Figure 7.1), we

simplify this sum to:
@) @)
)+ @)
@ ®
() f?'
O O

Now, by induction hypothesis, we can replace §5 oI1# in the diagram
above, and by additivity we get:

2y ahyehiy

2 iy,

By definition of the union, this is exactly:

(o) (o)
i aliyeliy @ +
6 * @

7.2 Properties of resource categories

Therefore, following the definition of a 2-partitioning, we have:

O
Zfafisfy OO

which is exactly the diagram from Figure 7.6a.

b) If f is empty, we have:

egonf:egongoeA
=idjo ey

=1a,

by definition of the union on the empty multiset; a bialgebra law
(Figure 7.1); and a coherence law of resource categories.

Otherwise, writing f as[fi, ..., fu], wehaveI1f = fi+I1[f, ..., ful.
Writing h =I1[f, ..., fu], we obtain:

egoTlf = epo (fi*h)
=¢gougo (fi®h)oda
=(ep®¢ep)o (fi®h)o0da
:(830f1)®(830h)06A
= (epoidyo fi) ® (¢poh)oda
0.

by definition of the union; a bialgebra law; bifunctoriality of ®;
the fact that f; is pointed; and the fact that the pointed identity is
non-erasable.

2. Completely symmetric to 1.

We also describe the interactions of (unions of) bags of pointed morphisms
with pointed identities.

Lemma 7.8 — Interaction of bags with id®

Consider f € s (Ge(A, B)). Then:

- if f=1[¢],
dsoTIf = {8 iff=lgl
0 otherwise.
If f = [g], we clearly have
idy oT1[g] = idzog = g

since ¢ is pointed.

155

156

7 Resource Categories

Otherwise, iff =[], then Hf =14, = 1B © €4, and we compute:
idy oI1f = idjongoes = Doeq = 0

by non-erasing property of pointed identity.
Finally, if f has at least two elements, we can write I1 f=g=IIh
with g a pointed morphism and / a non-empty bag of pointed
morphisms. We compute:
id3, o (g *I1h)
=idy o (yBo (g®1_[fz) oéA)
= { id, ® eg) o (g ®ITh) oo} + {(ep®id}) o (g ®ITh) 06,4}
= {(id} 0 g) ® (ep oTlh) 0 64} + {(e5 0 g) ® (id} o TI) 0 6}
{ |d og ®006A} {O® |d oTlh oéA}

by definition of the union; non-duplicative property of id*; bifuncto-
riality of ®; Lemma 7.7 for the first term and pointedness of ¢ with
non-erasive property of id® for the second one; and asmc laws.

7.2.3 Comonoid morphisms

As observed in the previous pages, resource categories are not cartesian:
although tupling shares some similarities with a cartesian product, it
does not behave like one in general. However, some particular morphisms
do behave as is usual in a cartesian category: comonoid morphisms.

Definition 7.9 — Comonoid morphism
A morphism f € 6(A, B) is a comonoid morphism if:
dpof=(f®f)oda and egof=¢én.
Of course, identities are comonoid morphisms. It follows from a simple
diagram chasing that the projections also are, as well as 1.

Moreover, comonoid morphisms are closed under composition.

Morphisms obtained by the interpretation of resource terms
are never comonoid morphisms, but structural morphisms used in the
interpretation always are.

7.2 Properties of resource categories

Lemma 7.10 — Comonoid morphism and tupling

Consider f € B(A,B),g € B(A,C)and h € B(D, A).

1. If f is a comonoid morphism, then 7t,. o (f, ¢) = &;
2. If g is a comonoid morphism, then 7y o (f, g) = f;
3. If h is a comonoid morphism, then(f, g) o h =(f o h, g o h).

Straightforward from the definitions.

The analogous properties for n-ary tupling follow by induction — we
shall also refer to Lemma 7.10 when using these generalizations.

A similar lemma holds for unions.
Lemma 7.11 - Comonoid morphism and union

Consider f € Ms(6(A,B))and h € B(C, A).
If h is a comonoid morphism, then (ITf) o h = IT(f o h).

Finally, we state several distribution properties for the composition with
the tupling of a comonoid morphism and a union of pointed morphisms;
which again are direct consequences of the definitions.

Lemma 7.12 - Left-projection and {/, TTf)

Consider f € Mf(Ge(A,B)) and h € €(A,B) a comonoid mor-
phism. Then:

h if f is empty,

0 otherwise.

7-C£’O<hlnf_) = {

Lemma 7.13 - Tupling and (/, T1f)

Consider f € M (Ge(A,B)) and h € €(A,B) a comonoid mor-
phism. If g1, ..., 9n € B(C, A), then:

(gill<i<myolnTIfy = > {gio(hIfiy[1<i<n).
ffix.xfy

Lemma 7.14 — Union and (4, T1f)

Consider f € M (Be(A,B)) and h € €(A,B) a comonoid mor-
phism. If & :=[g1,..., &l € Ms(G(C, A)), then:

go(hIIfy = >, [(gio(hIIf)) .

fafir.sfy 1<i<n

157

158 | 7 Resource Categories

Note that this interpretation is
very similar to the one used for PCG,
which will make sens in the following
chapter — where we study PCG as a re-
source category, whose objects are arenas
— since we choose the singleton arena o
as the object 0 and all the other construc-
tions are the same.

7.3 Interpretation and Soundness

7.3.1 Interpretation

From now on, we fix a closed resource category ‘€ with a chosen object o.

Types and contexts. We first set:

@] % o

KA ..., Al = [A1]® - ® [A4]
[A — B]

def

= [Al = [B]

For contexts, we set [I'] = Qx:a)er[A].

Note that for any type A := B—a, currying and associativity morphisms
induce an isomorphism:

Ca: [A] — [B] = o.

If (x : A) € T, we then write
varl: [[] — [[E]] =0

for the projection morphism [I'] — [A] followed by Ca.

For I' and A disjoint we also use the following isomorphism:
/X\I",A: [[F]] ® [[A]] —> [[F, A]] ,

defined from the symmetric monoidal structure in the obvious way.
Remark that X\ is a comonoid morphism.

Terms. The interpretation of terms (or, rather, of typing derivations)
follows the three kinds of judgements from Chapter 5.

Consider I', A € 6 and A= (A1,...,A,). We define:

def

» Tm (;(F;A) = C@.(F,A),
> Bo([;A) E uls(Tme(T; A)),

> 500 (T; A) = TheicnBe (T; Ay).

Remark that sequences and bags are interpreted as actual sequences and
bags at the “meta-level”, rather than via the “internal” bags (i.e. products
of pointed maps) or products (i.e. via the monoidal structure) in 6.

This apparent duplication of structure will be resolved when interpreting
applications. For that purpose, in addition to the product T1f € (T, A)
of a bag of morphisms f € Bgg(T; A), we also define the packing of a
sequence of morphisms j? =(fi,..., fa) € (T; A) as:

def

(f) & (f,..., 1If) € BT, A®).

7.3 Interpretation and Soundness

[T+rmAxs:A—B] = A[[r]],[[A]],[[B]]([[F,x :AFmms:B]o /X\[[l"]],[[x:A]])
- def . e
Trmxt:a] = eV [a] © (Id[[z‘i]]ﬁo
[Crrnsf:B] = eviapsy o [T Frons: A — B, TI[T kgq £ : A])
[T reg (51, 0] A] = [[Crrmsi:A]l1<i<n]
[Cre (Gr,on Sn) Al % ([Tregsi:A]l1<i<n)

Figure 7.7: Interpretation of the resource calculus

We now define the three interpretation functions:

» [-]: Tm(, A) — Tme([T]; [A]),
> [-]: Bo(, A) — Bge([T]; [A]),
> [-]: 5o, 4) — ([TT; [AD,

all written [—], by mutual induction as in Figure 7.7.

Remark that by definition, the partitions of [5] coincide with (the inter-
pretations of the elements of) the partitions of 5.

The interpretation is extended to sums of terms:
> [-]: ST A) — ST ([T]; [A])

relying on the additive structure of 6. We give no interpretation to sums
of bags or sequences.

For the sake of brevity, we might omit brackets when using
the interpretation of types, e.g. we write id4 for id4]. Likewise, we might
write for example [s] for [I" kv, s @ A].

7.3.2 Technical lemmas

Finally, we state some technical results needed for the substitution
lemma.

Lemma 7.15 — Weakening
Consider I' kg4 5 : A. Then, we have:
T[T, x : Bty 5 : A] o Mr,x.p) = T[T gy 5: A] o me

Structural induction of the generalised statement for terms,
bags and sequences.

Lemma 7.16 — Variable substitution

Consider a contextI' with (y : B) e I. Let A =T, x : A. Then:

(1) vary o Mrea) = Caom,,
(2) Varﬁ o Mr,(x:a) = Varg oTly.

Direct from the definitions.

ovark, ([T ke, £: f_{]]|))

159

160 | 7 Resource Categories

Lemma 7.17 - Types isomorphism

Consider a type A := B — a. Then,

Caoldpy = idz o Ca

From the properties of A and ev, and the compatibility of
id® with A (see Definition 7.6).

Lemma 7.18 — Interpretation of sf

Consider I" F1p, st o, withT b1, s: A, and A := B = a. We have
the following equality:

[T+ sF:a] = evy, o(Cao [s], ATFID)

A tedious computation using properties of the structural
morphisms.

7.3.3 Substitution lemma

We show that the interpretation of a substitution in the resource calculus
can be expressed as a substitution in the semantics.

Semantic substitution. The bulk of the proof consists in proving a suit-
able substitution lemma, for which we must first give a semantic account
of substitution. We define three semantic substitution functions:

—(—/x) Tmg([T, x: A];[B]) xBgs([I'T; [A]) — Tme([T]; [B])

—(=/x) : Boe([l,x: A;[B]) x Bgs([IT; [A]) — 6([IT, [B])

—=/x) : (IT, x - AL [B]) x Boo([TT; [A]) — 6([T], [B])
using our cartesian-like notations:

def

f48/xy = f oMy pxay o idpry, T18)
fCg/x)y = TIf o My preap o (idpry, T13)
FCg/xy = QD o Mg, o {idiry, T13) -

Substitution lemma. We may now state the main lemma:
Lemma 7.19 — Substitution
Consider f € Bg(T; A), A=T,x : Aand s € Tm(A; B). Then,

[s¢E/x)] = [sICTED/x) -

7.3 Interpretation and Soundness

We show the result by induction on typing derivation,

proving the stronger statement that for all t € Bg([’; A) and A =
I',x: A, wehave:

(1) ifs € Tm(A; B), then [s(t/x)] = [s]{[t]/x);

(2) if§ € Bg(A; B) and 5(t/x) = X1<i<n 5i,
then Z1cie, T[S = ICIFL/)

(3) if§ € Sq(A; B) and 5(t/x) = 1<i<u 5i,
then i<i<n{[5i]D = [BIC[F]/x);

Remark that the hypothesis for bags and sequences must be stated
carefully: syntax substitution yields sums of bags and sequences
whereas the semantic substitution is not stable under sums.

Case1l. Assume s € Tm(A; B). We have three possibilities.
» If s is an abstraction: We consider A b1y Ay.u: C — D.

By definition of the substitution, we have:
(Ay.u) (E/x) = Ay. (ut/x)) .
Writing Q for I', y : C, we compute:
[Ay.ul[E]/x)
= [Ay-u] © My geny o idr, TI[F])
= Ancp ([A, y:Cronu:D]o mMy:C)) o My () © {idr, TT[F])
=Arc,p ([[M]] o Ma,y:c) © ((/X\F,(x:A) o (idr, I[f])) ® id(y:C)))
=Arc,p ([[u]] o Ma,x:a) © {Mr (y:0), TI[E] © W))
=Ar,c,p ([[u]] o Ma,x:a) © (ida, TT[f] o 11¢ © /X\f}(y;c)) ° /X\F,(y:C))
= Arc.o ([4] @ Ma e © (ida, TTQ kg F 1 AJ) 0 Mry0))
= Arc,o (L) © Mrgy0))
= Arcp ([[Q b u(F/x) : B mr,(y:c))
= [T b Ay. (u(t/x)) : B]

by definition of the substitution; definition of the interpretation;
naturality of A; a (lengthy) diagram chasing; Lemma 7.10 and the
fact that /\ is a comonoid morphism; Lemma 7.15; definition of the
semantic substitution; induction hypothesis; and finally definition
of the interpretation.

» If s is an application u o: We consider A +1, u 0 : B.
By definition of the substitution, we have:

wo)E/xy= 27 (u(hr/x) (3(k/x)) .

{4?1*[2

161

162 | 7 Resource Categories

Writing /N\ for /\[ry, [x:4], we now compute:

[u B¢ [£]/x)
[u 8] o M\ o (idr, TT[¢])
eve,p o ([u], TI[3]) o /N o (idr, TT[#])
eve,p o ([u] o M, TI[2] o M) o (idr, TT[t])
> evepo([u] o /M o(idr, T131), I1[5] o /M o {idr, TIZ2))

[F1<31#32
Z evc,g o ([[uﬂ o/Mo (idr,l'[[[fl}]),l'[[[@]] o M o {idr, H[[Ez]]»
33 eve o [uIKIR]/x, 01K [l /)
Fafsh

> evepo([uch/x)], D [5, :])
A iel

> > eves o [ult/x)], T[5g, :])
Fabjsl, i€l

> 2o wE/x) (37,)]
Fafd, i€l
3 w(Bi/x) (6(R/x)]
Fafshy

[(u2)(E/x)]

by definition of the semantic substitution; definition of the interpre-
tation, assuming we have A b1, 4 : C — B and A bgy 0 : B; Lemma
7.10; Lemma 7.7; the observation that the partitions of t coincide
with the partitions of [t]; definition of the semantic substitution
again; induction hypothesis on u and 7, assuming

o(ha/xy = >0,

iel

(7.2)

compatibility of everything with the additive structure; definition
of the interpretation again; definition of the interpretation of a sum
and (7.2); and finally definition of the substition.

» If s is an application y U: Again, we have subcases:

> If the head variable is x: We consider A Fr, X0 : a.

By definition of the substitution, we have:

(x2) (F/xy = > (x(h/x)) (5(E2/x))

Z<IiT1 *iTZ

> u (3(F /x))

F<a[u]+t

7.3 Interpretation and Soundness

Writing /N\ for /\r (r.4), we compute:

[x I [ED /x)

= [x 9] o M o (idr, TT[t])

=evg, o(idL_ ovary, ([T])) o M o (idr, TT[F])

=evg , ofid%_ o vars o M, {[3]]) o M) o {idr, TI[£])

= D eve, o ovary oMo (idr, IT[A]), ([F]) o A oidr, TI[E]))
taf+ty

= D evg, 0 (id% | o var o N\ o (idr, TI[E]), [B]¢[F2]/x))
t<afy+ty

= Z eve . © (idé% 0 Ca o 7, o (idr, TIH]Y, [B1¢ [F2]/x))
F<af*fy

= D evg, o o laoT[h] [B)[R]/x))
t<ity*ty

= > eve, o{Caoidy o T[H], [FIC[E]/x))
F<afy*fy

= > eve, o{Cao [ul, [B([E1/x))

EQ[H]*EZ

= > [u(%E/x))]

<[ul+t

by definition of the semantic substitution; definition of the inter-
pretation; Lemma 7.10; Lemma 7.13; definition of the semantic
substitution; Lemma 7.16 case (1); Lemma 7.10; Lemma 7.17; Lemma
7.8; and the last lines are as in the previous case using Lemma 7.18.

> If the head variable is y # x: We consider A b1, y 7 : .

By definition of the substitution, we have:
(y2)(F/x) =y (5(/x))
As in the previous subcase, we compute:

[x BI¢[F] /)

> evg, oidh | ovary o A oidr, TT[A]), [F1([F:]/x))
Fafy*fy

> eve, oidh | ovar, oy o (idr, TT[R]), [BI¢[F]/x))
t<ty*ty

=eve , © (id'é_)a o Varg, [BICIE]/x))

=[(y) (E/0)]

with the same justifications as before; Lemma 7.16 case (2); Lemma
7.12; and the same justifications as before.

163

164 | 7 Resource Categories

Case 2. Assumes :=[s;| 1< i< n]eBg(A;B).

Writing /N\ for /\r (1.4), we compute:

[51CTED /)
= [1[5] o /N o (idr, I[F])

(1—[[si] o /X\) o (idr, TT[t])

1<i<n

> T Isil o Mo idr, II[E])

Fatjx.. by 1<i<n

= > |1 siKED/x)

F<tjx.. by, 1<i<n

>3 s/l

faf;x.. F, 1<i<n

by definition of the semantic substitution; Lemma 7.11; Lemma 7.11
again; definition of the semantic substitution; and finally induction
hypothesis.

Case 3. Assumes3 :=(5;|1<i<n)e SqA;B).

Writing /N\ for /\r (y.4), we compute:

[SICTED /)
= {[B] o M o idr, TT[£])
=(I1[5;] | 1 < i < n) o M o{idr, I[T[t])
=(II[5;] o M | 1 < i < n) o(idr, [1[t])

ST A1[5;] o Mo idp, TI[E]Y | 1 < i < n)
fati*.. .ty
> (BKIEY [1<i<n)
t<ati*.. .ty

IR ECE [RET R

fatix.. .ty

by definition of the semantic substitution; definition of packing;
Lemma 7.10; Lemma 7.13; definition of the semantic substitution;
and finally induction hypothesis.

7.3.4 Soundness

From the substitution lemma above, we deduce that the interpretation is
invariant under reduction.

Theorem 7.20 — Soundness
Consider S € ZTm(I; A). If S ~ S’ then [S] = [S'].

Preservation of f-reduction follows from Lemma 7.19.
Invariance for bags and sequences must be stated carefully: reduction
yields sums of bags and sequences whereas the sets Bgg(I', A) and

(T, /_l)) are not stable under sums.

7.4 How to build your own resource category | 165

Toplevel reduction. Consider a redex I Fr;,, (Ax.s) t : A. Then:

[(Ax.s) t]
=evp_a o {[Ax.s], TI[F])
=evga o{Arpa ([T, x: By s: Al o Mr), TI[E])
=evp_a o (Ar,g,a ([s] © Mr x:5)) ® ida) o (idr, [I[F])
= [s] o Mr,x:p) o {idr, TT[])
= [sI[]/x)
= [s(t/x)]

by definition of the interpretation (with I' Fr, Ax.s : B — A);
definition of the interpretation again; smcc laws and the definition
of tupling; equations of monoidal closure; the definition of semantic
substitution; and finally Lemma 7.19.

Context closure. To show that invariance extends by context closure,
we prove the three statements:

(1) ifs e Tm([;A)and s ~» S’ then [s] = [S];
(2) if5 € Bg(T;A)and 5§ ~ Xcr 5; then T1[5] = 3¢ T1[5];
(3) ifs e So;A)and S ~ Yier Si then ([S]) = Xier{[Si])

by mutual induction, following the inductive definition of context
closure. Finally, this extends to sums as required.

7.4 How to build your own resource category

Resource calculus is closely related to Erhrard and Regnier’s differential
lambda-calculus [20], which is usually interpreted using differential
categories (introduced in [7] as a categorical framework for differential
linear logic).

However, here we study resource calculus in relation with games, and
strategies of pointer concurrent games are not built from a model of
linear logic: their categorical structure is not a differential category.
Nevertheless, resource categories are built using similar constructions to
some differential categories, more precisely monoidal storage categories as
described in [8].

The intuition behind these similarities is that the exponential ! of differ-
ential categories allows us to go from linear morphisms from A to B, to
morphisms from !A to !B, which behave linearly with respect to !A and
!B, but not with respect to the original objects A and B. These intuitions
will guide us in our construction of resource categories from additive
monoidal storage categories — which are the categories we mostly refer
to when mentioning “differential categories” in this section, although
differential categories in general are a much wider notion. Our main focus
here is not to give an exhaustive presentation of differential categories,
but rather to present the particular categorical structure which we will
use to build a resource category.

[20]: Ehrhard and Regnier (2003), “The
differential lambda-calculus’

[7]: Blute, Cockett, and Seely (2006), ‘Dif-
ferential categories’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

166 | 7 Resource Categories

OO

1A

Figure 7.8: Comonad laws

Recall that we use squared
boxes for ! applied to morphisms:

0 - ®

We wrrite dig and der for the nat-
ural transformations because they match
the digging and dereliction rules of linear
logic (introduced in [24]).

[24]: Girard (1987), ‘Linear logic’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

1A 1A

A 1A A 1A

Figure 7.9: Coalgebra modality

1A

1A

Figure 7.10: Bialgebra modality

1A 1A 1A 1A
1A 1A 1A 1A
7.4.1 Additive monoidal storage categories

Coalgebra modality. Coalgebra modalities are similar to comonoids
(Definition 1.6), but they build over a comonad.

Definition 7.21 - Comonad

Consider a category 6. A comonad on 6 is (!, dig, der) with

1.6 —> 8 an endofunctor,
digy: 1A —lIA a natural transformation,
derg:!'A—> A a natural transformation,

satisfying the equations of Figure 7.8.

Definition 7.22 — Coalgebra modality [8, Definition 1]

A coalgebra modality on a symmetric monoidal category 6 is
(!,dig, der, A, e) with (!, dig, der) a comonad and two natural trans-
formations

Ag: 1A SIARQIA ea:!'A—>1

such that for any A, (!1A, Aa, ea) is a comutative comonoid (Defini-
tion 1.7) and dig preserves A in the sense of Figure 7.9.

Bialgebra modality. Next, we define bialgebra modalities, which again
are reminiscent of bialgebras seen in previous sections.

b6 44

7.4 How to build your own resource category

1A 1A

Figure 7.11: Addititve Bialgebra Modality Laws

A A A
D - f S
1A 1A 1A 1A 1A 1A

Figure 7.12: Product rule and chain rule of codereliction

Definition 7.23 — Bialgebra modality [8, Definition 4]

A bialgebra modality on an asmc €6 is (!, dig, der, A, e, V, I) with
(1, dig, der, A, e) a coalgebra modality and for any A, a bialgebra
(A, Aa,ea, Va,Ia) following the equation of Figure 7.10.

Definition 7.24 — Additive bialgebra modality [8, Definition 5]

An additive bialgebra modality in an asmc 6 is a bialgebra modal-
ity (!, dig, der, A, e, V, I) compatible with the additive structure in
the sense of Figure 7.11.

Additive bialgebra modalities can be equipped with a codereliction, a
natural transformation cod4: A —!A named codereliction because it has
the inverse type to der4, but which is not an inverse of der 4.

Definition 7.25 — Codereliction [8, Definition 9]°

Consider an asmc 6. A codereliction for an additive bialgebra
modality (!, dig, der, A, e, V, I)isanatural transformationcod4 : A —
!A satisfying the following equations:

eqocodg =0 (constant rule)

dery ocody =idg (linear rule)

as well as the equations of Figure 7.12.

167

1A 1A
0 =
A 1A

A A

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

3: The chain rule equation given here
is the version presented in [23] and not
the (slightly longer) version of [7, Def-
inition 4.11]; however both are equiva-
lent in monoidal storage categories ([8,
Lemma 7 and Corollary 5]).

[23]: Fiore (2007), ‘Differential Structure
in Models of Multiplicative Biadditive
Intuitionistic Linear Logic’

[7]: Blute, Cockett, and Seely (2006), ‘Dif-
ferential categories’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

168 | 7 Resource Categories

4: More precisely they are in bijection
with deriving transformations satisfying
the V- rule of [7].

[7]: Blute, Cockett, and Seely (2006), ‘Dif-
ferential categories’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

[38]: Seely (1989), ‘Linear Logic, *-
Autonomous Categories and Cofree
Coalgebras’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

Codereliction is a key notion of differential categories: in an asmc with a
bialgebra modality, coderelictions induce deriving transformations* ([7,
Theorem 4.12]). In an asmc with an additive bialgebra modality, coderelic-
tion are in bijection with deriving transformations ([8, Theorem 4]).

Storage Categories. Now, we focus on storage categories, which are smcs
with a coalgebra modality and a cartesian product &, with the following
isomorphism:

'(A&B) =!A®!B

called Seely isomorphism (introduced as “Aiso” in [38]).

Recall that in a category €, a terminal object is an object T such that for
any object A € 6, there exists a unique morphism in 6(A, T), noted
Ta: A — T. A category 6 has finite products if it has a terminal object and
for all objects A, B € B, there is a product (A&B, 74, Tg) in 6 satisfying
the universal property of products.

Definition 7.26 — Seely Isomorphism [8, Definition 10]

Consider an smc € with a binary product &, a terminal object T, and
a coalgebra modality (!, dig, der, A, e). It has Seely isomorphisms
if the map xr, defined as:

o ' TS,

and the natural transformation), defined as:

ImAQ!mp

Xan: |(A&B) %1 (A&B) ®! (A&B) —22% 1 A@1B

are isomorphisms.

Definition 7.27 — Monoidal Storage Category [8, Definition 10]

A monoidal storage category is a smc with finite products and a
coalgebra modality with Seely isomorphisms.

We can consider storage categories with an additive structure.
Definition 7.28 — Additive Monoidal Storage Category

An additive monoidal storage category [8, Definition 11] is a
category € that is a monoidal storage category and an additive
symmetric monoidal category, with the same monoidal structure.

Additive storage categories are actually related to asmcs with a bialgebra
modality.

Proposition 7.29 — from [8, Theorem 6]

Consider an additive monoidal storage category 6.

Then we define (!, dig, der, A, e, V, I) with:

I(id,ida) XAA
Ap: A ——

10 XT
es: A>T —> 1

T+

o

Va: IA®IA 251 (A&A) 2272514
=il

Lo T 251 24

and it is a bialgebra modality.

In [8], the authors even prove that those additive storage categories are

equivalent to asmcs with a bialgebra structure.

7.4.2 The construction

We start from an additive monoidal storage category.

Definition 7.30 — Res(—)

(A&A) 22251 A01A

7.4 How to build your own resource category | 169

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

[8]: Blute, Cockett, Lemay, and Seely
(2020), ‘Differential Categories Revisited’

Consider an additive monoidal storage category ‘€ with a codere-
liction cod. Using the notation of Proposition 7.29, we define the
category Res(®6) with same objects as € and morphisms as:

Res(®)(A,B) = 6(!A,!B).

Definition 7.31 — Tensor for Res(—)

We define a bifunctor ®geg() in the following way:

A ®pes(g) B=A&B

f ®rese) § =Xcp © (f®8) ©xas

for any objects A, B, C, D and morphisms f € Res(6)(A, C) and

g € Res(6)(B, D).

Indeed, morphisms of a resource category do not all behave linearly,
which is why we define Res(®)(A, B) as B(!A, !B): these are morphisms
that are not necessarily linear with respect to A and B. To obtain a
monoidal structure in Res(6), we prove that ®ges(¢) is a tensor, using
Seely isomorphisms to see (A ®pges() B) as LA®!B. The additive bialgebra
modality structure of @ easily induces a bialgebra structure in Res(6)
(which we will define precisely in the next proof). Finally, recall the
parting remark of Section 7.1: pointed identity laws are very similar to
the dereliction and codereliction laws of differential categories. We will

thus construct id® from der and cod.

170

7 Resource Categories

Theorem 7.32

Consider an additive monoidal storage category € with a codere-
liction cod.

Then Res(®) is a resource category.

We use notations of Definition 7.30. To make the equations
less cluttered, we write & for Res(®) and A for id4, and we omit
indices for y when they are clear from the context.

SMC. We prove that (R, ®g, T) is a smc (Definition 1.2). We set:

g (IC
a%, . ¢ (A&B)&C) S1A&B)RIC 25 (1A8!B)®!IC
0(:6 Y 1A -1 -1
A1 A ® (1BOIC) X L1 A®I(B&C) 2o 1(A&(B&C))

(T®IA Ag

A% (T&A) SiTeid 225 114 2414
1A P

p? 1(A&T) SiaeT 1A 0 T 1A
X e X1

o, (A&B) S!A®IB ——>!B®IA ——!(B&A)

and a direct diagram chasing, using smc properties of ‘€ and the
fact that x is an isomorphism, shows that R is a smc too.

Additivity. Direct from the additive structure of €.

Bialgebra structure. For any object A, we define the morphisms:

A% 1 -1
5%+ 1A HIARIA Lo 1(A&A) 1A 1 T
i 1(A&A) Sraeia 1A ORI ANy QXY

Then one can check that (A, 04, €4, tia, N4) is abialgebra by diagram
chasing, using x and the properties of the bialgebra modality of €.
Likewise, we check that it is compatible with the monoidal structure
of R (Figure 7.3).

Pointed Identity. Finally, for any object A, we define the pointed
identity as:

id? s 1A 2 4 214
and we check that it matches Definition 7.3:

» idempotent:

id} oid, = coda odery ocody o dery

cody oidy oderg

id,

by definition of id% and linear rule of Definition 7.25.

7.4 How to build your own resource category | 171

» non-erasable:

R g _ -1

€, oid} = x; oey ocody odery
:)(floOOderA
=0

by definition; constant rule of Definition 7.25 and additivity.
> non-erasing:

id% o’y = coda odera ol xr (definition)
=codg 000 8, Lemma 2
8 AT ([L]) [8]: Blute, Cockett, Lemay, and Seely
=0 (addlthltY) (2020), ‘Differential Categories Revisited’

Actually derg o I4 = 0 was part
of the original definition of bialgebra
modalities ([7, Definition 4.8]), but it can

» non-duplicable:

6% o id,.q =)(g} 4 ° A ocody odery (definition) be deduced from the other axioms and
naturality of I and der ([8, Lemma 2]).
and using string diagrams in (6, ®, I), we have: [7]: Blute, Cockett, and Seely (2006), ‘Dif-

ferential categories’

1A 1A 1A
e = ? + ?
1A 1A 1A 1A 1A 1A

by product rule (Definition 7.25, Figure 7.12) and additivity.
Therefore,

6% oidy = (id% ®a Ia) + (Ia ®g idY)

again using Seely and the definition of id®.
» non-duplicative:

id%, o u% = cods oders oV4 0 xA, A (definition)
which gives us, using string diagrams in (6, ®, I):
1A 1A

1A 1A 1A 1A
D 06 . b

1A 1A 1A

by compatibility of der and V (Definition 7.23) and additivity;
that is

id%, o % = (id%, ®x ea) + (ea ® id%)

using Seely again and the definition of id®.

172

7 Resource Categories

7.4.3 What about closeness?

Intuitively, a category € is closed if for any pair of objects A and B,
B(A, B) can also be seen as an object of 6. In particular, for monoidal
categories, ‘6 is monoidal closed if there exists —o and A a bijection natural
in A, B, C such that:

AA,B,C5 C@(A@ B, C) = C@(A,B —o C)

What happens if we consider 6 as in Theorem 7.32 a monoidal closed
category? Does the closed structure also transport to Res(6)? Let us try
to prove the isomorphism above for & = Res(€). Everything seems to
go smoothly for the first part:

R(A®4 B,C)=%6('(A&B),!C) (definition)
= B('AQ!B,!C) (Seely isomorphism)
= G(!A,!B —!C) (closed structure of B)

All that is left to do now is to define —og such that
R(A,B —g C)=%6('A,'B —!C),

but that is where the difficulty lies: there seems to be no obvious way
to define —og such that !(B —og C) = !B —!C. In particular, it is clear
that (B — C) and !B —!C are not necessarily isomorphic. Hence, the
question of whether or not we can build a closed resource category from
a closed differential category remains open.

7.5 Conclusion and perspectives

There is still much to study on resource categories. For instance, we did
not tackle yet the subject of cartesian structure for a resource category.
However, the subcategory of comonoid morphisms is cartesian — to what
strategies do they correspond in pointer concurrent games? Besides,
morphisms interpreting finite resource terms do not form a subcategory,
because they lack identities — how can we best describe their structure?
What about finite strategies in general?

Resource categories were introduced to better understand the links
between resource terms and strategies; we hope to generalize this corres-
pondence to the Taylor expansion of A-terms.

PCG and Resource-calculus

We now check that PCG is indeed a ressource category, such that the
induced interpretation of normal forms coincides with the interpretations
from Chapter 5, thus completing the proof.

8.1 PCG is a resource category

Recall that we already know PCG is a symmetric monoidal category (see
Theorem 6.60).

8.1.1 Additive structure

We start by checking that PCG is enriched over commutative monoids.
Consider two arenas A, B, then PCGJ[A, B] comes with an additive struc-
ture with, for any 0,7: G + A, the sum ¢ + 7: G + A is defined as the

formal sum:
def
o+t= >

gelsog(GrA)

(o(@+17(@)-q,

and 0 is the empty strategy (supp(0) = 0). The tensor and the composition
are compatible with the additive structure, hence PCG is an asmc.

8.1.2 Bialgebra laws

Now, we look at the bialgebra structure. For an arena A, we start by
defining the bialgebra morphisms, using the contraction renaming;:

ca: A®RA — A
(1,a) — a
(2,2)

= a.

Then the bialgebra morphisms are:

Oa = idaga < ca, Ea = 1ar, UA = ca < idaga , Na = Tia.

Using lemmas on renamings from Chapter 6, we check that those
morphisms follow bialgebra laws. Most of them are quite easy to prove;
the composition 6 © u is more subtle and requires us to be very careful
about composition and partitions of positions versus configurations.

Lemma 8.1 — Coalgebra laws

Consider an arena A, then (A, 0a, €a) is a commutative comonoid
(Definition 1.7).

8.1

8.2

8.3

PCG is a resource cate-

gOTy 173
Compatibility with

normal forms 182
Conclusion 183

We write | for the empty

arena. For any arena B, 1g is the strategy
on B with only the empty isogmentation
0 in its support, with coefficient 1.

174 8 PCG and Resource-calculus

Lemmas (and proposition) used: Associativity. We have:

- 6.53: renamming of a composition;

—-6.31: #eutr-ality of cqpycat; apan O (6A ®ida) ® Oa

- 6.51: identity renaming;

- 6.56: tensor of renamings; = (aA,A,A) 'd(A®A)®A) © (idaga * ca ® ida) O (idaga = ca)

— 6.38: tensor of identities;
— 6.54: inverse of a renaming;
- 6.52: composition of renamings. =apAA X (idA®A <A ® idA) © (idA®A > CA)

=aaan = (dagaea © (idasa < ca®ida)) © (idaga > ca)

=(aaaa > ((idaga =< ca ®ida) © idaga)) = ca
= (anaa > (idaga = ca ® ida)) = ca

=(aa A > (idaga < ca ® ida < idp)) < ca
=(aaaa > ((idaga ® ida) < (ca X idp))) x ca

= ((anaa xdagaea) = (ca X ida)) < ca
= ((idA®(A®A) = a;,lA,A) = (ca X idA)) Y
=idag(reA) X (cA o(ca Xidp) o a;’lA/A)
=idag(asa) > (ca o (ida X ca))

= (ida ® idagn) > (ca © (ida X ca))

= ((ida ® idaga) > (ida X ca)) < ca
= (idA ® 6A) ® oa

by definition; Lemma 6.53; Proposition 6.31; Lemma 6.53; Propo-
sition 6.31; Lemma 6.51; Lemma 6.56; Lemma 6.38; Lemma 6.54;
Lemma 6.52 twice; computation of the two renamings; Lemma 6.38;
Lemma 6.52; and Lemma 6.56, Proposition 6.31, and definitions.

Neutrality. We have:

Ap © (ep ®idp) © Oa
= (Ian =idiga) © (1ar ® ida) © (idaga > ca)
Ia < (a0 @ idp) < ca
ida

by definition; Lemma 6.53 and Proposition 6.31; and direct compu-
tation using the definitions.

Commutativity. We have:

VaA O Oa
= (saa > idaga) © (idaga = ca)
= ((saa > idaga) @ idaga) *< ca
= (saa > idaga) = ca
= (idaga > SAA) > CA
= idaga < (ca ©spA)
= idagA = €A
=0a

by definition; Lemma 6.53; Proposition 6.31; Lemma 6.54; Lemma 6.52;
computation of the renamings; and definition.

8.1 PCG is a resource category | 175

Likewise, pa and na respect algebra laws — since they are completely

symmetric we don’t detail the proofs.
Lemma 8.2 — Algebra laws

Consider an arena A, then (A, ua, na) is a commutative monoid
(Definition 1.5).

Finally, we look at the additional bialgebra laws.
Lemma 8.3 — Bialgebra laws

Consider an arena A. Then 04, €a, ua and 1a follow the additional
bialgebra laws of Figure 7.1.

(a) The intuition behind the distributivity law should be
rather clear. Given a strategy on G - A ® A, the multiplication ua
will “flatten” the isogmentations on a single copy of A, and the
comultiplication 6 will distribute these isogmentations to the two
sides of A® A. This should be the same as taking isogmentations on
G+ A® A, distributing their left and right sides, and then gathering
everything to A ® A again. However, the actual proof is very subtle
and requires a lot of computation. In order to try and keep the
current proof to a reasonnable length, the technical details for the
distributivity law are presented in next subsection.

Leaving aside the first law for now, we focus on the other three.
(b) We have:
I ¥O) na © Al

= (idaga < cp) © 114 © (1 < idig))

= 1iraea © (I < idig)

= 11a0a © (id < 1)

= 1jaga < 1!

= (1ra® 1ja)

by definition; computation of the composition; Lemma 6.54; Lemmas
6.53 and 6.30; computation of the renaming.

(c) Symetric to (b).

(d) By definition, we have:

NMAO UA = 1an O Tja = Ty

8.1.3 Proof of the bialgebra distributivity law

(a) Multiplication and co-multiplication.

(b) Unitor and co-multiplication.

(c) Multiplication and co-unitor.

(d) Unitor and co-unitor.

Figure 7.1: Bialgebra laws.

Let us look at the exchange rule between 6 and u again. First, we must

introduce some additional notation.

Consider A a negative arena and x € Conf(A). We write

x = yWz when y,z € Conf(A), |x| = |y| U|z| and |y| N |z| = 0.

176 8 PCG and Resource-calculus

This is analogous to x = y * z (and entails x = y * z), but instead of the
tagged disjoint union we have the standard set-theoretic union, which
Given two configurations happens to be disjoint.
X1, X2 € Conf(A), we set x1 * xp with:

» events |x1| + |x3],
» display may d((i,a)) = dx;(a),
» causal order inherited.

def ,, . def
Then x1 * x € Conf(A). dp = ('d/-\ ®YVAA® 'dA) o (5A ® 6A) ’ gA = UA® Ua

Qualitatively. We rephrase the exchange rule: we write

for “distribute” and “gather” (see Figure 8.1) which lets us phrase the
desired bialgebra law as p © pa = ga © da.

Writing S(xq, . .., Xn) L HSym (x1) X ... X #Sym (x,,), we have:

o¥o B

)S(X/y/U,V) . A

X,y,u,v € Pos(A

- 1 LY
ga @ @ " varu,vze:Pos(A) Sy, uv) A
where d;”""" and g;*"*"" are the isomorphism classes of the augmentations
Figure 8.1: Distribute and gather. di,w,! and g i'x'!& obtained with
@) = (x*y)®u*v)F(x®u)® (y®0)
[Ig;’y’u’vll = QY@ UV)F(x+y)® (u*v)

and the obvious copycat behaviour on each component x, y, u, v.

For our proof, the first key observation is the following lemma:
Lemma 8.4 — Qualitative behavior

Consider an arena A, and X, y, x’,y’ € Pos(A). Then,

XY~ XY XUYLXr Nt~ XYL Xr Y
o 0p," = Z Z 9a Od, 0

X1,Xr,Y1,Yr St x=x1 Wx, s.t. X;EX],XrEXy
XPXr =X, YIYr =Y - y=Y) Wyr st YI€Y1,YrEYr
XPHYI=X, Xe2Yr =Y x'=x] Wx; s.t. X[€X], X, €X;

y'=y; Wy; s.t. y €y yrEy;

Consider a symmetry ¢: x * y = x’ * y’. This symmetry
sends some events of x to x’, and some others to y’ — likewise,
it sends some events of y to x’, and some to y’. Following these
partitions, symmetries ¢ : x * y = x’ * y’ are in bijection with

x X Wx, QLr X = x;
y = vy P X =Y
x' = X; W, ! Qri: Yy = X,
yo= y ey Prpt Yr =Y
Additionally, this decomposition satisfies
X,y Xy XLXLYLYL XLXe, YL Yr
6A Op Up™" = 8 Op1,1®9:)®(P1,©91,1) dA

which is verified by an immediate analysis of the copycat behaviour
of this composition.

8.1 PCG is a resource category | 177

We then proceed with, for arbitrary x e x, y €y, x" € X',y € y"
X,y X’,y,
(NI T

= Z 6 G(P Ha Y

@ ey=x'ay’

r/ylr%' X1,Xr,Y1,Yr
Z Z G((f)l 1Py, l)®(‘l)l r®Qr, r) d

x=x1 ¥Wx, (p”x,_

YOy s J[

x’ x[Ux PriyIE =
’ r
y’ VI*yr QrriYr =Y,

=2 2] 2

X1,Xr,Y1,Yr S.t. x=x] Wx, s.t. X]EX], X EXy (p,,,;x,zx;
XX =X, YI*Yr =Y y yz Wy, s.t. y1€}'z,yr€yr @ -xygy’
xi#y1=X', Xr#yr =y’ x’ =x] Wx] s.t. xExl,x ex, T !

Pr 1 Y1=

v y, WY SLYIEYLYIEY, o)y yy

— X1,Y1Xr/Yr X1,Y1:XrYr
= > > 9a ©dy :

X1, %r,Y1,Yr St x=x] Wx, s.t. X]EX], X, EXy
XPXr =X, YIYr =Y y y; Wy, s.t. yley;,yrey,

xpxy1=x', Xp2yr =y’ x! x Wy, s.t. xexl,x €X).

f]/, @yr s.t. yIEYl/]/rEYr

by the definition of composition of isogmentations (which does
not depend on the chosen representative); the observation above;
reorganizing the sum by symmetry classes; and again via the
definition of composition of isogmentations.

This is sufficient to ensure that 5a © ua and gy © dg have the same
isogmentations, but not that they occur with the same coefficient.

Quantitatively. Again, we need to introduce a new notation.
If x=yWzwithy € yand z € z, we write x €y, z

But there may be several splittings of x into y and z, i.e. pairs (y, z) such
that x = y Wz with y € y and z € z. We write |x <y, z| the number of
such pairs. It is easy to see that this is invariant under symmetry, thus
we may write |x <y, z| for |[x «y,z| for any x € x.

Given this definition, Lemma 8.4 rewrites as
Corollary 8.5 — Qualitative behavior with splittings
Consider an arena A, and x, y, x’,y’ € Pos(A). Then,

X,y Xy _ Z X,y X1 1% Yr X1,Y1,%r Yr
0, O = Sxixeyyr YA ©d, ,

X1, Xr,Y1,Yr S.t.
X[*Xr =X, Y1*Yr=Yy
Xy =X, Xpxyr=y’

where for each x;, X, Y1, Y we note:
X,y def ’ ’
Sk = X XL X 1y €y ye| X €x, x| |y <y, |

To conclude the proof, the next key observation is:

178

8 PCG and Resource-calculus

Lemma 8.6 — Splitting symmetries
Consider an arena A with x,y € Pos(A). Then,

#Sym (x xy) = [x *y < x,y| X #Sym (x) X #iSym (y) .

Fix arbitrary x € x and y € y that we assume disjoint, and
z = x Wy € x=*y. The set of symmetries on x * y is clearly in bijection
with the set of symmetries

prz=xx*Y

which we shall study. As in the lemma above, such a symmetry
sends some events of z to x and some to y; this induces a splitting
z = x" Wy’ with induced ¢, : x" = x and ¢, : ¥y’ = y, so that x" € x
and y’ € y. Conversely, any such splitting of z with accompanying
symmetries yields a symmetry z = x * y. From this it is straight-
forward to obtain a bijection witnessing the announced equality
(keeping in mind that we may fix in advance a chosen xy: x = x
for all x € X, so as to bridge between symmetries x’ = x and
endosymmetries x = Xx).

Finally, we prove the exchange law of bialgebras:

Lemma 8.7 — Exchange law
Consider an arena A. Then,

6‘946".194:@&«@{1/91.

We have:
6A © UA
1 X ’
_ s o Y
- Z S(X y X’ y/) 6A QP'A
x,yEPos(A) sy
x’,y’ePos(A)
SX,Y
X1, Xr,Y1,Y X1,Y1,Xr,Yr X1,Y1,Xr),
— Z Z r r .gAIYIrY)GdAIyIryV

! !
x,yePos(A) X1, Xr,y1,¥r s.t. S(X’ Y, X,y)

X’,y’EPOS(A) XP*Xr =X, Y1*Yr=Yy
Xp#y1=X', Xp#yr =y’

Xy
_ Sx1.%e y1yr LYK Y) KVIX Y
- SO0 X0, YL * Y X * YL Xt yr) | O © %
x1,% €Pos(A) 1 rr Yl rr Al s Xy 1
y1,¥r€Pos(A)

1 X X, X X
— Z S(X ")2 . gA[ry[r r/Yr ® dA[/y[/ r/Yr
X[,XTEPOS(A) IRy, yll Yr

y1,yr€Pos(A)
1 L A XUYLXe Y
9a

(x;,x,,yl,yrEPos(A) S(Xl/ Xy, YI/ Yr)

0] (Z 1 . dxlryerVIYr)

A
X1,%r,Y1,yr EPOS(A) SOxt, %r, Y1, ¥r)

Go1 © dy

8.1 PCG is a resource category | 179

A B A B

o A

A B A B

Figure 7.3: Compatibility of (co)monoids with the monoidal structure

by unfolding the definition of 64 and pa; then using Corollary
8.5; then reindexing the sum in the obvious way; then applying
Lemma 8.6; and finally by linearity, observing that any composition
gy o MY where one of x; = X, y; = X}, X, =y and y, = y;
does not hold is null.

8.1.4 Compatibility

Finally, we prove that the bialgebra structure is compatible with the
monoidal structure of PCG.

Lemma 8.8 — Compatibility

For any arena A, the bialgebra structure (0a, €a, A, 7]a) is com-
patible with the monoidal structure of PCG, in the sense that the
morphisms satisfy:

co-unitor with tensor: EagB = A1 O (€4 ® €B)
unitor with tensor: Naes = (Na ® 18) © A;
(co-)unitors with unit: e =1 = idr

and the equations of Figure 7.3.

(co)-unitor with tensor. Both cases are symmetric; clear by
definition and computation of the composition.

(co)-unitor with unit. By definition, we have ¢ = 1, =idy =17,.

(co)-multiplication and tensor. Both cases are symmetric; clear
using lemmas on renaming.

8.1.5 Pointed identities

We define the pointed identities of PCG. For any arena A, we note
Conf,e(A) the pointed, or well-opened, con-
figurations on A — that is, the configura-
tions with a unique minimal event.
Likewise, we note Pos. (A) for the pointed
For any arena A, we define the pointed identity idy : A - A as: positions on A, ie. the isomorphism
classes of pointed configurations.

Definition 8.9 — Pointed identities in PCG

1
g .
DV

x € Pose(A)

180 8 PCG and Resource-calculus

For any arena A, we note
Aug, (A) the pointed, or well-opened, aug-
mentations on A — that is, the augmenta-
tions with a unique minimal event.
Likewise, we note Isog, (A) for the pointed
isogmentations on A, i.e. the isomor-
phism classes of pointed augmentations.

A pointed identity on A is a
endomorphism on A which is

» idempotent,

non-erasable: 4 oid% =0,
non-erasing: id/’AA ona =0,
non-duplicable:

vwvyy

dp0ids, = (id% ® na)+(na ®id}) ,
» non-duplicative:

id%opa = (id} ® e4)+(ca ®id}) .

Before checking that idj is a pointed identity in PCG, we give an alter-
nate characterisation, using the restriction of strategies to their pointed
isogmentations.

Definition 8.10 — Trimmed strategies

Consider arenas A, B and a strategy o: A I B. The restriction of o
to well-opened isogmentations, or trimming of o, is the strategy:

o2 > o@-q.

q € Isog, (A-B)

Then it is clear that the pointed identity on A is the trimming of the
identity on A.

Lemma 8.11 — Alternate characterisation of idy

For any arena A, we have id} = (ida)e.

More generally, we show that pointed morphisms (in the categorical sense)
are pointed strategies (in the sense that all the isogmentations in their
support are pointed).

Lemma 8.12
Consider arenas A, B and a strategy o: A +- B. Then:

idg © 0 =0,.
Let us check that id, satisfies the axioms of a pointed identity.

Lemma 8.13
For any arena A, id} is a pointed identity.

Idempotence. Direct by Lemmas 8.12 and 8.11.

Non-erasable. By definition of ea:
Ep © id; =11 © id;.

But the only isogmentation in 144 is 0 the empty isogmentation,
and the configuration x% is not pointed, hence 15, © idy = Opy.

Non-erasing. We have:
idy ©na =ida © 1ja = (11-a)e = Oja

by definition of s and Lemma 8.12.
Non-duplicable. By definition of da:

IFYO) id; = (idA®A < CA) © id; .

Any isogmentation q € supp(0a) is of the form (q; ® qz) > ca, where

8.1 PCG is a resource category | 181

both qg;’s are copycats. So the left configuration x% is pointed iff q is
of the form (q; ® 0) < ca with q; pointed, or (0 ® gz) < ca with q
pointed. Computing the composition, we obtain:

(idaga =< ca) © idy = (idy ® a) + (A ®id})
Non-duplicative. We have:

idy © pa =idy © (ca < idaga) = (ca > idaga),

by definition of ;s and Lemma 8.12. But any q € supp(ua) is of the
form cp > (01 ® g), so pointed isogmentations of a are either of
the form ca > (q; ® 0) with q; pointed, or of the form ca > (0 ® qp)
with g, pointed. Computing the composition, we obtain:

(CA > idA®A), = (Id/._\ ® SA) + (EA ® Id;‘) .

8.1.6 Closed structure

We already know that PCG is a SMCC from Theorem 6.63. We need
to check that A is compatible with the pointed identity as required by
Definition 7.6.

First, remark that since A preserves well-openedness for isogmentations,
it is immediate that it also preserves trimming;:

forany0: G® A+ B, Agas(0e) = (Agas(0)), -
From this we easily deduce the next lemma.
Lemma 8.14 — Compatibility of A with id® in PCG
Consider two arenas A, B. We have:
idi g = Aaspas (id50evagp) .
For any A, B, we have

An=pag (idy © evag)

= Ap—Bas ((evas),) (Lemma 8.12)
= (Aa=pAag (evap)), (A preserves trimming)
= (ida=B). (Definition of ev)
=idy_p (Lemma 8.11)

Hence PCG has the desired structure, and we conclude:
Theorem 8.15 — Closed structure

PCG is a closed resource category.

182 8 PCG and Resource-calculus

[[1“ Frm Ax.s : A — B]] = A[[F]],[[A]],[[B}]([[F/x tAbrn S B]] o /X\[[r]],[[x:A}])
rd ef e - -
[Crimxf:a] eV 1] fa] © (ldmw ovark, ([T Fe, £ : A]D)
[[F Frm S f: B]] dZQf ev[A],[B] © ([[F FrmS: A — Bﬂ,l_[[[l—' FBg F :A]])
[Creg [s1,.-,sn]:A] £ [[Trrmsi:A]|1<i<n]
Tre (31,...,5.) Al £ ([Tregdi:Al1<i<n)
9
Figure 7.7: Interpretation of the resource calculus
IT b1 Ax.s: A > Bllrn = A'[[S;]]Q,-W,HB]] (I, x : A e s : Bllrm)
IT b x ool & O ke T2 Alls)
”r"Bg [51/---1511]:14”89 = 1_Ils.og[”F FrnSitAllm [1<i<n]
IT ko (S1,oe 8 s Allse = (T veg 52 Aillag | 157 1 Jiog

Figure 5.7: Isomorphism for normal forms of the resource calculus

Figure 5.6: O;(q).

8.2 Compatibility with normal forms

Finally, we show that, up to the bijection || — ||+, between normal resource
terms and isogmentations, the interpretation of a resource term in the
resource category PCG coincides with its normal form.

Proposition 8.16 — Compatibility with normal forms

Consider s € Tmp(I'; A). Then [s] is the sum having ||s|| . with
coefficient 1, and 0 everywhere else.

Proof. Recall the interpretation of the resource calculus in a resource
category given in Figure 7.7. Restricting to normal forms rules out
the third clause. We inductively prove the remaining cases:

» if s € Tmy(I; A), then [s] = ||s||tm;
» if 5 € Bgn(I; A), then I[5] = ||5]|gg;
> if § € Sone(I A), then ([S]) = [I5]]
The identity follows immediately from the induction hypothesis

for sequences, bags and abstraction terms, since the interpretation
matches the bijection for normal forms described in Figure 5.7.

The case of a fully applied variable is less obvious. Recall the
construction of the i-lifting, as presented in Figure 5.6.

We want this construction to match:

eViE]0 © (id® ovarL, ([T r £ BIPY .

[B]=0

8.3 Conclusion 183

Let us look at the behavior of ev in PCG. We know that:

[B].[a]
- = -1 i -
VB0 T A[[ﬁ]]:o,[[ﬁ]],o ('d[[B]]=>0))

Thus the isogmentations in eViE] 0 all look as in Figure 8.2, where

the left and right sides are copies'of the same position, with causal (§i® = o) ® §i® L o
links given by copycat as usual. When composing eViE] 0 with
- = _ + /
(. ovarl, ([T re, F: B]DY, 1

[B]=o0

the right side will interact with ([T <, ¥ : B]|) - which, by induction

hypothesis, is ||T' - f:B lsq. After the hiding, we are left with

exactly the i-lifting construction. Figure 8.2: An isogmentation in ev 4

[A] 0
It immediately follows that our interpretation in PCG computes a repre-
sentation of the normal form:

Theorem 8.17 — Interpretation and normal form

If s € Tm(I'; A) has normal form ;g s, then [s] = Xiep || Sill 7m-

8.3 Conclusion

Thanks to the interpretation of resource terms from Chapter 7, we only
had to check that PCG is indeed a closed resource category to obtain
the interpretation in PCG. Moreover, this interpretation is not discon-
nected from our previous construction linking PCG and the resource
calculus! Although we define the interpretation of a term s with a purely
categorical construction, we show that this interpretation is the sum of
isogmentations obtained via the isomorphism between normal terms and
PCG from the normal form of s.

CONCLUSION

resource NF(S) =5 S;

term S

[s] = ZIsl

Figure 9: The interpretation behaves
nicely!

Conclusion

We presented the construction of Pointer Concurrent Games, as well as
results regarding its connections with HO games, the relational model,
and the resource calculus.

PCG and HO games. Augmentations in PCG were constructed to match
plays of HO quotiented by homotopy. There is a bijection:

Plays(—): Isog(A) = VisPlays™(A),~, [Theorem 3.27].

We showed that the equivalent of innocent strategies in HO is either:

» —-linear isogmentations, for meagre strategies [Theorem 3.40];
» or isoexpansions of —-linear isogmentations, for fat strategies.

Finally, we showed that this static correspondence extends to the cate-
gorical structure of PCG: Plays™(—) is a strict cartesian closed functor
between Fll and HOY" [Theorem 6.81].

PCG and Rel;. We showed that meagre innocent isogmentations in PCG
are positionally injective [Theorem 4.31]. This result translates to total finite
innocent strategies in HO [Theorem 4.32].

PCG and the resource calculus. We have a direct isomorphism between
normal resource terms and isogmentations [Theorem 5.18]. Thanks
to the interpretation of resource terms in a closed resource category
[Theorem 7.20], we have a sound interpretation of resource terms in
PCG. Moreover, the interpretation of a resource term is the sum of the
isogmentations obtained from its normal form via the isomorphism
for normal terms [Theorem 8.17], which gives us the diagram from
Figure 9.

Perspectives: ongoing and future works.

Taylor expansion. The diagram from Figure 9 is the first step in studying
the links between the Taylor expansion of A-terms and game semantics.
Given a A-term, its Taylor expansion is the sum of its approximations as
resource terms. We want to extend the results from Figure 9 to show:

M g (M) NF(T (M))

1) (2)
[M] = [= (INFEF M)

where M is a A-term, I (M) is its Taylor expansion, and NF(-) is the
normalisation.

We need to define J(—) as a Taylor expansion sending simply-typed
A-terms to terms of the simply-typed, n-long resource calculus — then (2)
is obtained from Figure 9.

To show that (1) commutes, we also need to describe the interpretation of
A-terms in PCG. Given a closed resource category, how do we construct a
cartesian closed category — which is the categorical structure usually needed
for the target of the interpretation of A-calculus? This is the subject of
ongoing work.

Untyped calculi. For now, we focused on typed A-calculus. Indeed,
augmentations and strategies live in arenas, so in order to interpret
untyped A-terms, we need a way to “type” them. This alone is not an
obstacle: following [29], untyped A-terms can be interpreted in HO games
as strategies on a universal arena.

However, the correspondence between resource terms and game semantics
requires the resource terms to be n-expanded — but what would it mean
for an untyped term to be n-expanded? Although this document only
presents results in the typed setting, we are — at the date of writing
— working on an untyped extensional resource calculus. The details are
presented in [6] (unpublished yet); we give but a brief overview here.

In the syntax of the extensional resource calculus, we allow for infinite
sequences of abstractions, and for applications to infinite sequences
of (almost always empty) bags. Intuitively, we replace n-longness in
the typed setting with infinite 7-expansion in the untyped setting. The
resulting terms are called extensional. We define Jey(—) the extensional
Taylor expansion, sending an untyped A-term to a linear combination of
extensional resource terms.

In the usual A-calculus, the structure of a A-term is captured by its Béhm
tree (see [2]). The normal form of the Taylor expansion of a term M is the
Taylor expansion of its Béhm tree:

NF(7 (M) = T (B(M))

as proved first in [21, Corollary 1] or in a more direct way in [41].

Nakajima trees (defined in [34]) correspond to Bohm trees up to infinite
n-expansion [2, Exercise 19.4.4]. The extensional Taylor expansion has
the same link with Nakajima trees as the usual Taylor expansion with
B6hm trees:

NF(Text(M)) = Text(N (M)

This extensional resource calculus allows us to extend the connections
between Taylor expansions and game semantics made in a typed setting
to the untyped setting.

Conclusion 187

[29]: Ker, Nickau, and Ong (2002), ‘Inno-
cent game models of untyped lambda-
calculus’

[6]: Blondeau-Patissier, Clairambault,
and Vaux Auclair (2025), Extensional Tay-
lor Expansion

[2]: Barendregt (1984), The lambda calculus
- its syntax and semantics

[21]: Ehrhard and Regnier (2006), ‘B6hm
Trees, Krivine’s Machine and the Taylor
Expansion of Lambda-Terms’

[41]: Vaux (2019), ‘Normalizing the Taylor
expansion of non-deterministic A-terms,
via parallel reduction of resource vectors’
[34]: Nakajima (1975), ‘Infinite normal
forms for the lambda - calculus’

[2]: Barendregt (1984), The lambda calculus
- its syntax and semantics

APPENDICES

Bibliography

Here are the references in alphabetical order.

(1]

[5]

6]

[7]

(9]

[10]

(11]

[12]

(14]

[15]

[16]

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. ‘Full Abstraction for PCF’. In: Inf.
Comput. 163.2 (2000), pp. 409-470. por: 10.1006/inco.2000.2930 (cited on page 2).

Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics. Vol. 103. Studies in logic and
the foundations of mathematics. North-Holland, 1984 (cited on pages 3, 16, 187).

Lison Blondeau-Patissier. ‘Resource Categories from Differential Categories’. In: 35es Journées Franco-
phones des Langages Applicatifs (JELA 2024). Saint-Jacut-de-la-Mer, France, Jan. 2024 (cited on page 90).

Lison Blondeau-Patissier and Pierre Clairambault. ‘Positional Injectivity for Innocent Strategies’. In:
oth International Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24,
2021, Buenos Aires, Argentina (Virtual Conference). Ed. by Naoki Kobayashi. Vol. 195. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021, 17:1-17:22. por: 10.4230/LIPIcs.FSCD.2021.17
(cited on page 38).

Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. ‘Strategies as Resource Terms,
and Their Categorical Semantics’. In: 8th International Conference on Formal Structures for Computation
and Deduction (FSCD 2023). Ed. by Marco Gaboardi and Femke van Raamsdonk. Vol. 260. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik, 2023, 13:1-13:22. por: 10.4230/LIPIcs.FSCD.2023.13 (cited on page 90).

Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. Extensional Taylor Expansion.
2025. urL: https://arxiv.org/abs/2305.08489 (cited on page 187).

Richard Blute, J. Robin B. Cockett, and Robert A. G. Seely. ‘Differential categories’. In: Mathematical
Structures in Computer Science 16 (2006), pp. 1049-1083 (cited on pages 8, 15, 147, 165, 167, 168, 171).

Richard Blute et al. ‘Differential Categories Revisited’. In: Appl. Categorical Struct. 28.2 (2020), pp. 171~
235. por: 10.1007/510485-019-09572-y (cited on pages 8, 165-169, 171).

Pierre Boudes. ‘Thick Subtrees, Games and Experiments’. In: TLCA. Vol. 5608. Lecture Notes in
Computer Science. Springer, 2009, pp. 65-79 (cited on pages 4, 41, 42).

Gérard Boudol. ‘The lambda-calculus with multiplicities’. In: CONCUR’93. Ed. by Eike Best. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 1-6 (cited on page 3).

Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. ‘A semantics for lambda calculi with
resources’. In: Mathematical Structures in Computer Science 9 (1999), pp. 437-482 (cited on page 3).

Simon Castellan and Pierre Clairambault. Disentangling Parallelism and Interference in Game Semantics.
2021. urL: https://arxiv.org/abs/2103.15453 (cited on page 105).

Simon Castellan et al. “The concurrent game semantics of Probabilistic PCF’. In: Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018.
Ed. by Anuj Dawar and Erich Gradel. ACM, 2018, pp. 215-224. por: 10.1145/32091608.3209187 (cited
on page 42).

Alonzo Church. ‘A Formulation of the Simple Theory of Types’. In: The Journal of Symbolic Logic 5.2
(1940), pp. 56-68. (Visited on 07/29/2025) (cited on page 3).

Pierre Clairambault. ‘Causal Investigations in Interactive Semantics’. Habilitation a diriger des
recherches. Aix-Marseille Université, 2024 (cited on page 6).

Pierre Clairambault and Marc de Visme. ‘Full abstraction for the quantum lambda-calculus’. In: Proc.
ACM Program. Lang. 4POPL (2020), 63:1-63:28. por: 10.1145/3371131 (cited on page 42).

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.4230/LIPIcs.FSCD.2021.17
https://doi.org/10.4230/LIPIcs.FSCD.2023.13
https://arxiv.org/abs/2305.08489
https://doi.org/10.1007/s10485-019-09572-y
https://arxiv.org/abs/2103.15453
https://doi.org/10.1145/3209108.3209187
https://doi.org/10.1145/3371131

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

(34]

V. Danos, H. Herbelin, and L. Regnier. ‘Game semantics and abstract machines’. In: Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science. 1996, pp. 394-405. por: 10.1109/LICS.1996.
561456 (cited on page 31).

Daniel de Carvalho. ‘“The Relational Model Is Injective for Multiplicative Exponential Linear Logic’.
In: 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016,
Marseille, France. 2016, 41:1-41:19. por: 10.4230/LIPIcs.CSL.2016.41 (cited on pages 5, 6, 65).

Thomas Ehrhard. “The Scott model of linear logic is the extensional collapse of its relational model’. In:
Theor. Comput. Sci. 424 (2012), pp. 20—-45. por: 10.1016/j.tcs.2011.11.027 (cited on page 41).

Thomas Ehrhard and Laurent Regnier. ‘The differential lambda-calculus’. In: Theoretical Computer
Science 309.1 (2003), pp. 1-41. por: https://doi.org/10.1016/50304-3975(03)00392- X (cited on
pages 8, 165).

Thomas Ehrhard and Laurent Regnier. ‘Bohm Trees, Krivine’s Machine and the Taylor Expansion of
Lambda-Terms'. In: Logical Approaches to Computational Barriers. Ed. by Arnold Beckmann et al. Springer
Berlin Heidelberg, 2006, pp. 186-197 (cited on page 187).

Thomas Ehrhard and Laurent Regnier. ‘Uniformity and the Taylor expansion of ordinary lambda-terms’.
In: Theoretical Computer Science 403.2-3 (2008), pp. 347-372. por: 10.1016/j .tcs.2008.06.001 (cited
on pages 8§, 19, 21).

Marcelo P. Fiore. ‘Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear
Logic’. In: Typed Lambda Calculi and Applications. Ed. by Simona Ronchi Della Rocca. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 163-177 (cited on page 167).

Jean-Yves Girard. ‘Linear logic’. In: Theoretical Computer Science 50.1 (1987), pp. 1-101. por: https:
//doi.org/10.1016/0304-3975(87)90045- 4 (cited on pages 3, 166).

Jean-Yves Girard. ‘Normal functors, power series and A-calculus’. In: Ann. Pure Appl. Log. 37 (1988),
pp- 129-177 (cited on pages 3, 4).

Russ Harmer. Innocent game semantics. Lecture notes. 2006. urL: https://perso.ens- lyon. fr/
russell.harmer/GS.pdf (cited on page 33).

J. M. E. Hyland and C.-H. Luke Ong. ‘On Full Abstraction for PCF: I, II, and III". In: Inf. Comput. 163.2
(2000), pp. 285-408. por: 10.1006/inco.2000.2917 (cited on pages 2, 23, 33).

André Joyal and Ross Street. “The geometry of tensor calculus, I'. In: Advances in Mathematics 88 (1991),
pp. 55-112 (cited on page 14).

Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. ‘Innocent game models of untyped lambda-
calculus’. In: Theor. Comput. Sci. 272.1-2 (2002), pp. 247-292. por: 10.1016/50304-3975(00) 00353 -4
(cited on page 187).

David P. Kierstead. ‘A Semantics for Kleene’s j-expressions’. In: The Kleene Symposium. Ed. by Jon
Barwise, H. Jerome Keisler, and Kenneth Kunen. Vol. 101. Studies in Logic and the Foundations of
Mathematics. Elsevier, 1980, pp. 353-366. por: https://doi.org/10.1016/50049-237X(08)71268-0
(cited on page 44).

Saunders Mac Lane. ‘Natural Associativity and Commutativity’. In: Rice Institute Pamphlet - Rice
University Studies 49 (1963), pp. 28—46 (cited on page 14).

Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics, Vol. 5.
New York: Springer-Verlag, 1971, pp. ix+262 (cited on pages 13, 14, 147).

Paul-André Melliés. “Asynchronous games 2: The true concurrency of innocence’. In: Theor. Comput.
Sci. 358.2-3 (2006), pp. 200-228. por: 10.1016/j .tcs.2006.01.016 (cited on pages 5, 35, 42, 43, 49).

Reiji Nakajima. ‘Infinite normal forms for the lambda - calculus’. In: Lambda-Calculus and Computer
Science Theory, Proceedings of the Symposium Held in Rome, Italy, March 25-27, 1975. Ed. by Corrado Bohm.
Vol. 37. Lecture Notes in Computer Science. Springer, 1975, pp. 62-82. por: 10.1007/BFb0029519 (cited
on page 187).

https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://perso.ens-lyon.fr/russell.harmer/GS.pdf
https://perso.ens-lyon.fr/russell.harmer/GS.pdf
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1016/S0304-3975(00)00353-4
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71268-0
https://doi.org/10.1016/j.tcs.2006.01.016
https://doi.org/10.1007/BFb0029519

[36]

[37]

(38]

[39]

[41]

Hanno Nickau. ‘Hereditarily Sequential Functionals’. In: Logical Foundations of Computer Science, Third
International Symposium, LFCS’94, St. Petersburg, Russia, July 11-14, 1994, Proceedings. Ed. by Anil Nerode
and Yuri V. Matiyasevich. Vol. 813. Lecture Notes in Computer Science. Springer, 1994, pp. 253-264.
por 10.1007/3-540-58140-5_25 (cited on page 2).

Gordon D. Plotkin. ‘LCF Considered as a Programming Language’. In: Theoretical Computer Science 5.3
(1977), pp. 223-255. por: 10.1016/0304-3975(77)90044-5 (cited on page 2).

Dana S. Scott. ‘A Type-Theoretical Alternative to ISWIM, CUCH, OWHY". In: Theoretical Computer
Science 121.1&2 (1993), pp. 411-440. por: 10.1016/0304-3975(93)90095-B (cited on page 2).

Robert A. G. Seely. ‘Linear Logic, *-Autonomous Categories and Cofree Coalgebras’. In: 1989 (cited on
page 168).

Peter Selinger. ‘A Survey of Graphical Languages for Monoidal Categories’. In: New Structures for
Physics. Springer Berlin Heidelberg, 2010, pp. 289-355. por: 10.1007/978-3-642-12821-9_4 (cited on
page 14).

Takeshi Tsukada and C.-H. Luke Ong. ‘Plays as Resource Terms via Non-idempotent Intersection
Types’. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 16,
New York, NY, USA, July 5-8, 2016. Ed. by Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM,
2016, pp. 237-246. por: 10.1145/2933575.2934553 (cited on pages 5, 6, 21, 35, 44, 91).

Lionel Vaux. ‘Normalizing the Taylor expansion of non-deterministic A-terms, via parallel reduction of
resource vectors’. In: Logical Methods in Computer Science Volume 15, Issue 3 (2019). por: 10.23638/lmcs -
15(3:9)2019 (cited on page 187).

https://doi.org/10.1007/3-540-58140-5_25
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1145/2933575.2934553
https://doi.org/10.23638/lmcs-15(3:9)2019
https://doi.org/10.23638/lmcs-15(3:9)2019

Alphabetical Index

a-equivalence, 17
B-reduction, 18
n-expansion, 21
n-long, 21
A-term, 16

additive SMC, 147
alternating linearisation, 51
arena, 23
negative arena, 24
positive arena, 24
well-opened arena, 24
arrow of arenas, 25
ASMC, see additive SMC
associator, 13
augmentation, 45
—-linear augmentation, 47
pointed augmentation, 47
total augmentation, 47
augmentation isomorphism, 47
augmentation morphism, 46

bag, 19
bialgebra, 148
bisimulation
augmentations bisimulation, 71
bisimulation between non-isomorphic
augmentations, 72

bisimulation through an isomorphism, 71

events bisimulation, 71
branch, 57

cardinality, 67
clone, 76
co-multiplication, 16
co-pointed morphism, 149
co-unitor, 16
commutative comonoid, 16
commutative monoid, 15
comonoid, 16
composition (in HO), 33
composition of isogmentations, 112
composition of strategies (PCG), 114
composition via an isomorphism, 108
configuration, 39
—-linear configuration, 48
pointed configuration, 39
total configuration, 48
confluence, 18

context, 70
minimal context, 77
pointers-preserving context, 76
copycat augmentation, 114
copycat isogmentation, 115
copycat strategy, 115
copycat strategy (in HO), 34
currying isomorphism (in HO), 34

desequentialization, 40
desequentialization of an augmentation, 46
display map, 39

enumeration, 19
evaluation morphism (in HO), 34
event, 39
expansion, 61
characteristic expansion, 68

fat innocent expansion (fie), 62
fat innocent isoexpansion (fii), 62
fie, see fat innocent expansion

fii, see fat innocent isoexpansion
forest morphism, 41

fork, 67

homotopy, 49
homotopy equivalence, 49
homotopy relation, 49

immediate causality, 23
innocence, 31
interaction, 104
interaction (in HO), 32
interaction of strategies, 33
isoexpansion, 62
isogmentation, 47
—-linear isogmentation, 48
pointed isogmentation, 48
total isogmentation, 48

justifier, 46

left-unitor, 13
legal play, see play

length of a play, see length of a pointing string

length of a pointing string, 26

meagre innocent augmentation (mia), 55
meagre innocent isogmentation (mii), 55

mia, see meagre innocent augmentation
mii, see meagre innocent isogmentation

monoid, 15
monoidal category, 13
move, 23

initial move, 24
multiplication, 15

P-view, 29
P-view forest, 31
P-visibility, 29
partition, 19
k-partition, 19
k-partitioning, 19
pentagon identity, 13
play, 27
positive play, 27
well-opened play, 27
P-visible play, 29
plays of an augmentation, 52
pointed identity, 149
pointed morphism, 149
pointer, 26
pointing string, 26
polarity, 23
polarity function, 23
position, 40
—-linear position, 48
pointed position, 41
position of a play, 41
positions of a strategy, 41
total position, 48
positional injectivity, 44
positionality, 43
predecessor, 46
prefix, 26
negative prefix, 27
positive prefix, 27
product of arenas, 25
product of configurations, 94
projection (in HO), 34

relational model, 41

renaming, 127

resource bag, 20
resource category, 150
resource reduction, 20
resource substitution, 20
resource term, 20
right-unitor, 13

sequence, 19
simple types, 18
SMC, see symmetric monoidal category
SMCC, see symmetric monoidal closed category
strategy (in HO), 30
fat innocent strategy, 31
finite innocent strategy, 31
infinite innocent strategy, 31
innocent strategy, 31
meagre innocent strategy, 31
P-visible strategy, 30
partial strategy, 31
total strategy, 31
strategy (PCG), 113
string diagram, 14
substitution (A-calculus), 17
symmetric monoidal category, 14
symmetric monoidal closed category, 14
symmetry (in a SMC), 14
symmetry (on configurations), 40

tensor, 13

tensor of augmentations, 124
thick subtree, 42

tree morphism, 41

triangle identity, 13

types, 18

underlying configuration, 46
unit, 13
unitor, 15

variable, 16
bound variable, 17
free variable, 17
fresh variable, 17

Nomenclature

Here we present several symbols that are used within the body of the document.

Categories

6,29 Categories

f,g,h Morphisms

A, B, C Objects

Calculus

5,t, Bags of resource terms
M,N,L Terms

I', A, Q Contexts

s,t,u Resource terms

S,T,U Sums of resource terms
A, B, C Types

x,Y,z Variables

3.t Sequences of resource terms

A,B,C Sequences of types

Games

a,b,c
t,u,v
A,B,C
q.p,r
X, Y,z

a,b,c

a,p,r
s, t
X,y,2

f.8h

Arena events
Linearisations
Arenas
Augmentations
Configurations
Configuration or augmentation events
Interactions
Isogmentations
Plays

Positions
Renamings

Strategies

	Page de titre
	Affidavit
	Liste de publications et participation aux conférences
	Résumé et mots clés
	Abstract and keywords
	Contents
	Introduction
	What is game semantics?
	About calculi
	Bridging the gap between models
	Contributions
	Outline

	Preliminaries
	Reminders: Categories, -calculus and Resource calculus
	Categorical Preliminaries

	Categorical Preliminaries
	Symmetric Monoidal Closed Categories
	String diagrams
	Monoids and Comonoids
	Lambda-calculus

	Lambda-calculus
	Terms of -calculus
	Free and bound variables
	Substitution
	Reduction
	Simple types
	Resource calculus

	Resource calculus
	Preliminaries on tuples and bags
	Terms of the resource calculus
	Substitution
	Resource reduction
	Typing rules
	Introduction to Hyland-Ong Games
	Arenas

	Arenas
	Definition
	Constructors on arenas
	Plays

	Plays
	Definition
	Views
	Strategies

	Strategies
	Definition
	Innocence
	Other properties of strategies: totality and finiteness
	Composition

	Composition
	HO and HOInn as categories

	HO and HOInn
	Links with the resource calculus

	Links with the resource calculus

	An introduction to Pointer Concurrent Games
	Static Pointer Concurrent Games: Configurations and Augmentations
	Relational Collapse

	Relational Collapse
	Configurations
	Positions
	Relational Model
	Positional Injectivity

	Positional Injectivity
	Positionality
	Positional Injectivity
	Augmentations

	Augmentations
	Definitions
	Isogmentations
	Additional Conditions on Augmentations
	Augmentations in PCG v. Plays in HO

	Augmentations in PCG v. Plays in HO
	Homotopy relation
	From plays to isogmentations
	From isogmentations to plays
	 is a bijection
	Meagre Innocent Strategies in PCG

	Meagre Innocent Strategies in PCG
	Meagre Innocent Augmentations and Isogmentations
	From innocent strategies to mii's
	From mii's to innocent strategies
	The isomorphism
	Fat Innocent Strategies in PCG

	Fat Innocent Strategies
	Expansions
	Fat Innocent (Iso)expansions
	The isomorphisms isog(-) and iexpMII(-) coincide
	A few words on Infinite Strategies

	A few words on Infinite Strategies
	Conclusion

	Conclusion
	Positional Injectivity, for PCG and for HO
	Duplicating Opponent Moves

	Duplicating Opp. Moves
	Proof idea
	Characteristic Expansions
	Bisimulation Relations

	Bisimulation Relations
	Bisimulations across an isomorphism
	Bisimulations between non-isomorphic augmentations
	Clones
	Total MIAs are Positionally Injective in PCG

	Pos. Inj. in PCG
	Positional Injectivity in HO

	Pos. Inj. in HO
	Total Finite Innocent Strategies are Positionally Injective in HO
	Beyond Total Finite Strategies
	Conclusion

	Conclusion

	Composition and Resource Calculus Semantics
	Augmentations are Normal Resource Terms
	Extensional simply-typed resource calculus

	Extensional simply-typed resource calculus
	Typing rules
	Reduction and substitution
	Normalisation
	A few additional PCG constructions

	A few additional PCG constructions
	Construction on arenas – HomGame
	Constructions on configurations
	The isomorphism

	The isomorphism
	Types and contexts
	Resource sequences
	Resource bags
	Currying
	Head occurrence
	The isomorphism
	Conclusion

	Conclusion
	Composition and Categorical Structure
	Composition for augmentations

	Composition for augmentations
	Interaction via an isomorphism
	Composition via an isomorphism
	Composing isogmentations
	Strategies and identities

	Strategies and identities
	Strategies
	Identities
	The categorical structure of PCG

	The categorical structure of PCG
	Associativity of the composition
	Neutrality of copycat
	PCG is a SMCC

	PCG is a SMCC
	Tensor
	Structural morphisms – intuitively
	Renamings
	Structural morphisms – formally
	Closed structure
	From qualitative PCG to HO

	From qualitative PCG to HO
	Arrowing
	Plays(-) and innocent strategies
	Identities
	Composition
	Functor between PCG and HO
	Conclusion and perspectives

	Conclusion and perspectives
	Resource Categories
	Definition

	Definition
	Additivity
	Bialgebras.
	Pointed Identity
	Resource Categories
	Closeness
	Properties of resource categories

	Properties of resource categories
	Constructions
	Bags of pointed morphisms
	Comonoid morphisms
	Interpretation and Soundness

	Interpretation and Soundness
	Interpretation
	Technical lemmas
	Substitution lemma
	Soundness
	How to build your own resource category

	How to build your own resource category
	Additive monoidal storage categories
	The construction
	What about closeness?
	Conclusion and perspectives

	Conclusion and perspectives
	PCG and Resource-calculus
	PCG is a resource category

	PCG is a resource category
	Additive structure
	Bialgebra laws
	Proof of the bialgebra distributivity law
	Compatibility
	Pointed identities
	Closed structure
	Compatibility with normal forms

	Compatibility with normal forms
	Conclusion

	Conclusion

	Conclusion
	Appendices
	Bibliography
	Alphabetical Index
	Nomenclature

